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ON VITALI-HAHN-SAKS-NIKODYM
TYPE THEOREMS
by Barbara T. FAIRES

Vitali-Hahn-Saks-Nikodym type theorems have long been
of interest to measure theorists. Starting with G. Vitali's now
classical research [23] relating integral convergence and equi"
absolutely integrable sequences and continuing through the
work of H. Hahn [14], 0. Nikodym [15], [16] and S. Saks [20],
the following well-known results emerged.

NIKODYM'S CONVERGENCE THEOREM. — If ((JiJ is a
sequence of realvalued countably additive measures defined on
a sigma algebra 2 and for each E e S, lim |^(E) exists,

n

then pi.o(E) = lim ^(E) defines a countably additive measure
S Tton

VITALI-HAHN-SAKS THEOREM. — If ((^n), ^ are real-valued
countably additive measures defined on a sigma algebra 2, such
that each (JL^ is ^-continuous and lim p^(E) exists for each

n
E e S, then lim ^(E) == 0 uniformly in n.

(l(E)^O
The first extension (related to the results of the present

paper) of the Vitali-Hahn-Saks and Nikodym convergence
theorems were to Ba,nach space-valued measures. The mea-
sures ^ were still required to be countably additive. A dis-
cussion of such extensions may be found, tor example, in
Dunford and Schwartz [12]. In the past few years, due in
large part to the renewed interest in Banach space theory
and the role played by vector measures in that theory, new
attention has been focused upon extending the Vitali-Hahn-
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Saks and Nikodym theorems to still more general cases. This
recent effort has been marked with some real success.

The proper setting for theorems of the Vitali-Hahn-Saks
and Nikodym type seems to be firmly established: these
results are best form.ula.ted in terms of the strongly additive
measures of C. E. Rickart [18]. If 0L is a Boolean algebra
and X is a Banach space, then an additive map (A : 0L —> X
is said to be strongly additive if ^ ^(^n) converges (uncon-

n
ditionally) for any sequence (aj of pairwise disjoint mem-
bers of dl.

Both the Vitali-Hahn-Saks and Nikodym convergence theo-
rems have been extended to the class of strongly additive set
functions (with o-complete domains) by J. K. Brooks and
R. S. Jewett [3] and R. B. Darst ([4], [5]). It should be remar-
ked that earlier T. Ando [1] had already proved a very gene-
ral Vitali-Hahn-Saks theorem for scalar-valued bounded fini-
tely additive measures on c-complete Boolean algebras (both
Brooks-Jewett and Darst work in cr-fields of sets); also,
G. Seever [21] gave an extension of Ando's result to certain
non-o-complete algebras, again for scalar-valued measures.
In the Brooks-Jewett-Darst extensions elegant ( < sliding hump "
arguments are used instead of the category arguments invol-
ving the Frechet-Nikodym topologies. In this paper, " sliding
hump " arguments will also be employed. There is an inherent
advantage to be found in the " sliding hump " arguments :
under the assumption that certain uniform conditions do not
exist, "humps" behaving similarly to characteristic functions
of disjoint sets (considered in l^) appear. Such considerations
lead J. Diestel ([6], [7]) and J. Diestel and the author [8]
to consider the relationship of the Vitali-Hahn-Saks and
Nikodym convergence theorems to the Banach space results
of A. Grothendieck [13], C. Bessaga and A. Pelczynski [2],
A. Pelczynski [17], and H. P. Rosenthal [19]. In turn this
motivated the problem dealt with in this paper: for which
non-sigma complete Boolean algebras (ft does the Vitali-Hahn-
Saks theorem hold? As one might expect the first response is :
not all. An example of an algebra where the Vitali-Hahn-
Saks theorem fails is given in section 2.

This paper proves that if €L is a Boolean algebra possessing
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the interpolation property (property (I)) and ((ij is a sequence
of strongly additive X-valued measures defined on 0L such
that lim p^(a) exists for each a e (51, then ^o(a) == I1111 ̂ (^

n n

defines a strongly additive map from <9L to X and the addi-
tivity of the (L^S is uniform. This result is closely related
to the Nikodym convergence theorem and one can derive
the Vitali-Hahn-Saks theorem from it. The theorem constitutes
a natural extension of Seever's theorem; our proof is similar
to Seever's in that we derive the result from an extension
of another classical piece of measure theory: Nikodym's
Boundedness Theorem. On the other hand, our proof of
Nikodym's Boundedness Theorem differs greatly from Seever's
on at least two counts. First, a Rosenthal-type lemma is
proved (see [19], [22] Lemma 1); secondly, our proof shows
clearly the role that property (I) plays in the proof. Seever's
proof relied upon the fact that if 0L is a Boolean algebra
with the property (I) and N is the ideal of null sets of a given
measure, then (9L/N is a complete Boolean algebra and,
therefore, the arguments could be made to depend upon for-
merly known results.

The derivation of the Vitali-Hahn-Saks theorem from the
Nikodym Boundedness Theorem is of some interest in itself.
In [9], J. Diestel, R. E. Huff and the author havestudied the
general problem of algebras with the Vitali-Hahn-Saks pro-
perty and the Nikodym Boundedness property. In particular,
it is shown there that whenever the Vitali-Hahn-Saks theorem
holds, the Nikodym Boundedness theorem follows. The
converse remains open; it is hoped that the derivation of the
former from the latter, given here, will shed some light upon
this problem.

The last section of this paper gives a proof of the Vitali-
Hahn-Saks theorem for measures defined on an algebra with
the property I and taking their values in a Hausdorff, topolo-
gical commutative group.

Throughout the paper CL will denote a Boolean algebra
(with unit 1) with the property (I). CL having the property (I)
means that for any sequences (aj and (&J in 0L satis-
fying a^ < b^ for all n, m there exists b e 0L such that
a^ ^ b ^ b^ for all n. This condition is equivalent to the

5
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condition: given any sequences (aj and (6J in (9L with
^ A cim ==0, ^ A &m == 0 for n ^ m and ^ A 6^ = 0
for all n, m, there exists an element a in OL such that
a ^ a/» and a A &n == 0 for all n.

The symbol X denotes a Banach space and X* its Banach
space dual. A finitely additive (A : (ft -> X is bounded whenever
there exists M > 0 such that ||(i(fc)|| ^ M for all b e €L.
A map [L : 0L -> X is said to be strongly bounded if

11^)11 -^0
as n -^ oo for each sequence (ej of pairwise disjoint ele-
ments in (X. A strongly additive [L : 0L -> X is one which
is finitely additive and strongly bounded. Rickart [18] showed
that a bounded, finitely additive scalar valued measure is
always strongly additive. A set H of strongly additive
measures (JL : OL -> X is uniformly strongly additive if for each
sequence (&J of pairwise disjoint elements in (9L,

sup {|| (Jt(6J|| : (A e H} -> 0 as n -> oo.

If p. : a—> X, then for each b (= ($1, | (Ji| (&) denotes the
total variation of pi on & ([12], p. 97) and | | p i | | (&) denotes
the semi-variation of (JL on b ([12], p. 320). It is easily
shown that pi : (Sl -> X is strongly additive if and only if
|(A| : 0L-> [0, oo) (or ||pi|| : eX-> [0, oo)) is strongly bounded.

I wish to thank my advisor, Professor J. Diestel, for his
suggestions in the preparation of this portion of my dissertation
written at Kent State University. Also I thank Professor
J. J. Uhl tor the helpful discussions on this subject and for
access to the preprint [22].

Some of the results in this paper are announced in [24].

Section 1.

LEMMA 1. 1. — Let K be a set of bounded additive, scalar
valued functions defined on €L such that sup |X| (1) < 4- oo.

X G K
If K is not uniformly strongly additive, there is an e > 0,
a sequence ((ij in K, and an element c in 0L such that

! [^(^l > ^- /^r ^ n e N.J-i
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Proof. — If K is not uniformly strongly additive, then
there is an e > 0, a sequence (Xj in K, and a sequence
(ej of pairwise disjoint elements in €L such that |X (e )\ > e
for all n e N . Let ^ = 1. Partition N\{1} into an infinite
sequence of infinite disjoint sets (n^). Since (SL has the pro-
perty (I), there is a sequence (^) of pairwise disjoint ele-
ments in 0L such that:

("i) ^ A ei = 0, n = 1, 2, . . . ;
(&i) ^ > e. for all i e IIi, ^ = 1, 2, . . .;

\ / w-1 \

(ci) 6i A ^ = 0 for all / e (N\{1}) LJ "i )•
\ k=l /

Indeed, if we let a, = e. for all i e III and b. == e. for
/• == ii, or / e (N\{l})\ni, then the sequences (a..), (b.)
satisfy the conditions given in the definition of the property
(I), (i.e. a. A ^ = 0, b, A ^ == 0 for ^ / and a, A b. == 0
for all i, /'). Thus, there is an element b^ in &, such that
&1 satisfies (oi), (^), (ci) for ra = 1. Next, let a. = e.
for all i e ni and let (^) be the sequence in €L with ele-1

ments ^,e..,, and ^, / e (N\{l})\(ni u ni). The pro-
perty (I) yields the existence of an element b\ in 0. such
that bi A 6i = 0 and b\ satisfies (oi), (&i), (q) for n == 2.
By continuing this process, we obtain a sequence (b],) of
pairwise disjoint elements in <3L as claimed.

The function \ is strongly additive so there is an n^ e N
such that |XJ(^) < ^- for all n > n^. Since

sup|X| (1) < + oo,
X e K

there is an ^ e n^, ^ > ^, such that |X/e.,)| < — for an

infinite number of / in 11̂ . If this were not the case (i.e.

for every k in H^, |X/e,)| < ^- for only a finite number

of / in n^), then for each n e N, there is a ; e H1

such that

l̂ *.)! > -js for i= 1,2, ...,n.
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Thus |Xj (1) > ^ •— for each n e N (where 1 e (9L such that

1 /\ a = a for all a e (X). This is a contradiction. Let

Ni-S/en^ : |x , (^ ) | < -^.

Partition NiVj^} into an infinite sequence of infinite
disjoint sets (II2). Again, utilizing the property (I), we
obtain a sequence (62) of pairwise disjoint elements in 0L
satisfying the following:

(03) &2. A (^ V 0 = 0, n = 1, 2, ...;
(&2) ^ ^ ^ for a11 l 6 n^ M = 1, 2, . . . ;

\ / n-1 \

(^) &2. A ^ = 0 for / e (Ni\{^})\( fj n^)-
v \ /c=l /

Choose Ha e N, n^ > ^i, such that |Xj (&2) < — tor all

n ^ Ug- By the same reasoning as before, there is an

^ ^ l1^? ^3 ^> ^2?

such that l^/ejl < —r tor an infinite number of / e n^.
^

Let N2 = S/ e n^: |X/e.,)l < — • Notice that
( )

I^J^)! < ^-
since 13 e N1.

The continuation of this process yields an infinite sequence
of infinite subsets of N, N1 =» N3 ^ . . ., an increasing
sequence ii < ^2 < • ' * °t positive integers such that if
k ^ 3, then ^ e N^_i, and a sequence {b^) == (&/,) of
elements in <9L such that:

(1) hk > ^j t011 all / > ^;
(2) &, A ^.-O for l ^ / ^ /c;

(3) 1^1 W <^ ^ -1 ,2 , . . . ;

(^ I^JI < 2^ forau /^N^;
(5) |XJ.J > s, / c = l , 2 , . . . .
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Notice that the choice of the N^s and (4) imply that

1^(^)1 < ^7

/ k \
for 2 < / < /c. Let h^ = b^ V (V ^ )• Then /^ > ^ for

\j=2 /
all /c, /' ^ 2. Applying the property (I), we can choose
c e 0L such that h^ ^ c ^ ^ for all A* ^ 2. For the remain-
der of the proof let X^ = X^, e^ == e^, and assume A* ^ 3.
Since \{c) = X/,(^ — e,) — X^(^\c) + X,(^), we have

r/ / f c \\ ~i r / k \\ "1
^c)+ ^ (^ v V^-)) A ^ - ̂  &, v (V^)) A ^/

L\ \y=2 / / J L \y=2 / / J

which by (2) and the disjointness of the e//s is
k-l \ \

= \{e,) + xJ b, V ( V ej ) - X,(fc, A c')
\ \y=2 / /

= \,{e,} + ̂ t(&,) + S1 ^(^) - ̂ t(^ Ac') .
Thus ^ 2

1^)1 ^ |x,(^)| - lx,(6,)| - S1!^.)! - |x,(^ A c')|
7=2

which by (3), (4), and (5) is

> .--^--y-^-^-i- > -£-
22+fc ^2 21+•/ 22+/c 2 '

Section 2.

THEOREM 2.1. — (Nikodym Boundedness) Let K be a set
of bounded, additive functions \: CL ~> X, and suppose K
^5 elementwise bounded on (St; ^.e. for every

b e OL, sup [|X(6)|| < oo.
X e K

Then K 15 uniformly bounded on €L\ i.e.
sup sup [I ^(6)[[ < oo.
bed X e K

Proof. — If K is not uniformly bounded, then neither is the
set [f\\ \ e K, /*GX*, H/11 ^ 1}. Thus we may assume
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without loss of generality that the functions in K are scalar-
valued. We shall use the terminology that an element e in
0L is unfriendly [10] whenever sup|X| {e) = oo. Suppose €L

X G K
contains an unfriendly element b. Two cases arise :

(1) & is not the supremum of two disjoint unfriendly ele-
ments in (St.

(2) Every unfriendly element in <Sl can be written as the
supremum of two disjoint unfriendly elements.

We plan to show that both (1) and (2) are impossible.
First, we show that if we assume (1), then we reach a contra-
diction.

Let b E 0L be an unfriendly element which is not the supre-
mum of two disjoint unfriendly elements in (St. Let X^ e K
be such that \\\ (b) > 1 -}- 8 sup | X ( & ) | . Then we can choose

e e a, e ^ b, with the proper^that |^(e)| > l^^. Then

\\(b A e')\ = \^(b) - ̂ (e)\ ^ \^(e)\ - \\(b)\
> NW NW-1 . NW^ _^_ _ __^——— > _^_.

If e is not unfriendly, let ^ = e. It e is unfriendly, let

(?i == b\e. Then, in either case, |^i(<?i)| ^ ' l l v / •
o

Suppose 61,^3, . . ., e^ and X^, Xg, . . ., \^ have been chosen
n \ / n \

such that 6i e (Sl, X, £ K, V e] ^ ^? an(^ °\\ V e j ) ls

j=i n \ \y=i /

unfriendly. By the assumption of case 1, V ej ls n0^ unfrien-
/ n \ 7=1

dly. Therefore, sup |x| [V ^ j ) = a < + 00- By the hypo-
1, CK \ 7=1X G K \^=1

/ /i
/ \ / " \\

thesis sup X ^ A ^ V ^ ) ) == P < + 00- Choose X^i in K
^eK \ \\j=i / /

such that |X^i|(&) > (n + 1) + 10(a + ?). Then
/ \ / n \\ / n \

|X^|(&\(V^ ) ^ |^|(6) -|^](Ve, > |^|(6) - a
\ \\7==1 / / \j=l /

> l^iiW - lxn^(6)- + ̂  + (S > ^|^i|(6).
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n \\ / ra \
Now choose e ^ b\\\f e , ] such that

\v=i /
IW^I ^ K+ilW/S.

Then

^i(A v ^ - v ^ A v^ l^l(^) \i+l
^=1

> l^llW p > IWW l^ll(&) , ( ^+1) ,

5 p " 5 10 r 10 '
^ |x,J(6)/10.

If e is not unfriendly, let e^ = e. If e is an unfriendly

=»\(V^v^ V e j. In either case,set, let e71+1

K+l(<'n+l)l > |X^|(&)/10.

We have now constructed a sequence (e,) of pairwise disjoint
elements in (t and a sequence (X,) of members of K such
that for each n e N, |X,(e,)| > N-6)- > —. Since

sup
l̂

^ 10

and each e, < &, we can apply Lemma 1.1 to the set

( X. : r e e N .
l^(^n

This yields a number e > 0, an element c in (9L and a
\ \ / , • ., ..„ , . / X, \\

\-x (V\\ I (which we sti11 denote . -subsequence of
J^^n)! / \ M^JI

|X.fc)| e „,,such that for n > 3, ,' ''vc; > -e-. Thus
I ̂ (en)) 2

K(c)| >y|X^)l > ^

and sup|X,(c)| == oo. This eliminates case (1).
n

Now, assume case (2); i.e. every unfriendly element can be
written as the supremum of two disjoint unfriendly elements.
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Thus it is possible to manufacture a sequence ((;„) of pairwise
disjoint elements in CZ with each <>„ unfriendly. Choose
\eK such that j^) ^ 1 and let ^ < e, be an element
m a for which I MM ^N(<'i)/4. Let i \= l . Partition
!N\{ii} into an infinite sequence (11^) of infinite disjoint
sets. Apply the property (I) to obtain a sequence (^) of
pairwise disjoint elements in d such that:

("i) ^ A e., == 0, n = 1, 2, . . . ;
(^i) a\ > e, for all i e 11^,

1 / B-l \

(ci) ai A ^ == 0 for all / e (N\{ii})\ |j "i .
^V k=l /

Choose ni e N such that |^i|(a^) < 1.
Let i'2 be the smallest element in 11^. Choose X^ e K

such that IX^KeJ ^ 1 + 4 sup |X(^)|. Let ^ < e. be an
X € K 2

element m Ct chosen so that Ix^)) > \^\{e^)l^. Partition
^B.\{^2} into an infinite sequence (11^) of infinite pairwise
disjoint sets. As in the proof of Lemma 1.1, we can choose a
sequence (a^) of pairwise disjoint members of 0. such that:

("2) ^ A (e.. V ej =0, n = 1. 2, . . .;
(^a) a^ > e. for all i e 11 ;̂

> / n-l \

(c2) ^ A ^ = 0 for all /'e (n^\{^})\U n^ .
.-,, '\ *=i /
Choose n^ > ni such that (^[(a^) < 1.

If we proceed in this manner, we obtain a sequence (X,) in
K, a subsequence (ej of (e,), a sequence (&„) in B, and
a sequence (o^) = (a^) in 0L satisfying:

(1) b, < ,̂ k == 1, 2, .. .;

(2) i w\ ^ IA^ > 4 + s1 ̂ p i wi;
•1: zl j=iXeK

(3) l^l(^) < 1, /c=l ,2 , . . . ;
(4) ^ ^ ^, / > /c;
(5) ^ A ,̂ =0, 1 ^ / ^ /c.

/ fc \
Let ^ = a, V ^y ^,). Then ^ ^ ^ for all /, /c. Choose

c e (9L such that ^ > c > ^ for all /c (an application of



ON VITALI-HAHN-SAKS-NIKODYM 109

the property (I)). Then

1^)1 ^ IWI - 1^)| - S K(M - \\{a, A c)|
./=i

^ IT+SJWI -l-SJ^(V -l
^ -7- — 2 -> oo as k —> co.4

Thus case (2) is impossible also.
We have shown that 0L does not contain an element e

such that sup |X|(e) = oo. Therefore,
X e K

supsup|X(e)[ =sup|X|( l) < + oo.
)^€K cedl X e K

COROLLARY 2.2. — If K 15 a se^ o/* bounded, additive func-
tions X : 0L -> X satisfying sup |[X(6)|| < oo /or eac/i 6 e (9L,

XGK
^n sup l |XH(fc) < oo for each b e (9L.

X G K

COROLLARY 2.3. — (Dieudonne-Grothendieck boundedness
theorem) Let [L : CL -> X be any function. Suppose H c X*
is total and h[L is bounded and additive for each h e H. Then
[L is bounded and additive.

THEOREM 2.4. — Let [L^ : (9L -> X be strongly additive for
each neN. If ^{b) -> 0 for each b e (9L, ^M {^ :neN}
is uniformly strongly additive.

Proof. — By a result in ([9], Theorem 2.1) it suffices to give
the proof for [L^ taking values in the scalar field. For each
b e (9L, sup {| ̂ (6)|: n e N} < oo. Hence by Theorem 2.1,
sup { | ( JLJ (&) : n e N} < oo for each b e 0L. If the set {(^ :
n e N} is not uniformly strongly additive, then by Lemma 1.1,
there is an s > 0, a subsequence (^) of (^) and an ele-

ment c in (9L such that \^{c)\ > ̂  for all A* e N. Thus
(A^(c) -> 0 a contradiction.

The following corollary is immediate from Theorem 2.4.
A proof can be seen in ([3], corollary 1.2).
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COROLLARY 2.5. — Let ^: 0i -> X &e strongly additive
for n = 1, 2, . . .. //* lim ^(fc) = (Ji(&) ^15(5 for each b e (9L,

n
(Aeyz (JL ^5 strongly additive and the ^, n e N, are uniformly
strongly additive.

It is known that Theorem 2.4 holding for an algebra CX is
equivalent to the Vitali-Hahn-Saks Theorem holding for (9L
(see [3], [9], [11]). Thus we have the next result.

THEOREM 2.5. — Let Y : <Sl-> [0, oo) be a bounded, mono-
tone function and for each n e N, p^ : (3L -> X a strongly
additive function with ^ < y- ^ l̂ m ^,1(6) ^1^5 /or ^ac/i

n
b e (9L, ^TZ {pi^ : n e N} 15 uniformly absolutely continuous
with respect to y.

As promised we now give an example of an algebra for
which the Vitali-Hahn-Saks theorem does not hold.

Example 2.6. — Let A be the algebra of finite and cofinite
subsets of the natural numbers N and for each n e N,
let (Ji^ denote the point mass at n. Then for every E £ OL

r f^\ /T7N ^° if E is finite

lim puE) == ui(E) == L -^ AT\ IT • i- •n v / v / (1 if N\E is finite.

Since any infinite sequence of pairwise disjoint elements in (9L
consists of finite subsets of N, each ^ is strongly additive.
However the pi/s are not uniformly strongly additive since
sup ||^n{i}|| = 1 for each element i in N.

Section 3.

In this section G denotes a Hausdorff topological commu-
tative group with 7] a base for the neighborhoods of 0 in G
consisting of symmetric elements. The meaning of a measure
[ i : CL —> G being strongly additive is clear. A notion for
group-valued measures (similar to variation for vector-
valued measures) is defined for each b e <9L by

[L{{b))= {pL(& A e): ee0L}.
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It is a short exercise to show that pi : 0L —> G is strongly
additive if and only if given a sequence (6J of pairwise dis-
joint elements in (9L and a neighborhood V of 0 in G, there
is an no e N such that (i((fcj) <= V for all n ^ rio.

THEOREM 3.1. — For each n e N, suppose ^ : (9L -> G
is strongly additive. If p^(&) -> 0 05 n —> co for each b e 0L,
(/i<m { ( J i ^ : M e N} 15 uniformly strongly additive.

Remark. — The proof presented here proceeds as that of
Lemma 1.1. In fact, the observation that elements in T] can
be chosen to behave in a designated manner yields the proof.
We give the details.

Proof. — Suppose the conclusion does not hold. Then
there is a sequence (e^) of pairwise disjoint elements in (9L,
a symmetric element V in T), and a sequence m^ < m^ < ' "
of positive integers such that for each n e N, ^m^n) ^ Y-
To simplify notation, let [A^ == (JL^.

Let ^ == 1. Partition the set N\{1} into an infinite
number of infinite disjoint sets (11^)^. There exists a
sequence (&^) of pairwise disjoint elements in GL such that:

(ai) b^ ^ e, for all i e 11^, n = 1, 2, . . . ;
(&i) b\ A ^ = 0, n = 1, 2, . . . ;

\ / n \
(ci) ^ A e, = 0 tor all / e (N\{1})\ U n^ •

\\ 1=1 /
That such a sequence (%) exists follows from the property(i).

By the continuity of addition, we can choose a symmetric
element Vo in T] such that Vo + Vo + Vo + Vo c: V and
for each k e N, a V/, e T] such that V^+i + V,,+i c V^. Vi

k
is chosen so that Vi + Vi <= Vo. Then S V, <= Vo for all

1=1
A' in N. Since (A^ is strongly additive, there is an n^ e N
such that p^((^)) c Vo. Recall that

^(W)- {^(^ A ^ ) : ^B}.
The lim (JL^(^) === 0, so there exists an element ig in n^,
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h > i^ such that ^(ej e Vo. Partition the set n^\{^}
into an infinite number of infinite disjoint sets (II^)1. An
application of the definition of property (I) yields a sequence
(6^) of pairwise disjoint elements in A such that:

(03) b^ ^ e, for all i e 11 ,̂ n = 1, 2, . . .;
W ^ A (^ v ^) = 0. M = 1, 2, ...;

\ / " \
(c,) ^ A ^ - 0 for / G (n^\{^})\ LJ n? .

\\ 1=1 /

Choose n^ G N, ̂  > ^, such that ^((6^)) c: Vo and choose
h ^ n^, 4 > 12, such that ^L^(^) e Vi and (JL^(^) e Vi.

Proceed in this construction to obtain a sequence

w - w
of elements in CL and a sequence ii < ig < . . . of positive
integers such that:

W ^ ^ ^? k > n;
(2) &. A ^-O, 1 < A- ^ M;
(3) (.,((&,)) e Vo, k = 1, 2, . . . ;
(4) (̂ J EVn-2, 1 ^ /c < n;
(5) ^J^V, / c = l , 2 , . . . .

/ n \

Let A, = &„ V ( V c., )• Then /i, > e,. for all n, /c. Choose
\A=I /

c e a such that /»„ > c ^ e..̂  for all re. As in the proof of
Lemma 1.1,

t1^) = V-d^) + (x,,(fcj + "1 .̂,(e.,) - (̂ (6,, Ac ' ) .

Since lim (A,^(c) == 0, there is an ^0 6 N such that (A, (c) e Vo
71 k tft\ / U

for all n ^ riQ. Thus for all n ^ n^

^(^) = ̂ ) - ̂ ) - ̂  ̂ (^) - ^^(fe, A c')

^Vo + Vo + Vo/c+ Vo c: V.
This contradicts (5).
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