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A CHARACTERIZATION
OF WEAKLY SEQUENTIALLY COMPLETE

BANACH LATTICES
by A. W. Wickstead

Meyer-Nieberg ([5], Korollar 1.8) has given a number of
properties of a Banach lattice, E, that are equivalent to
weak sequential completeness of the underlying Banach
space. Among these is that E is a band in E**; and
from [4fc], Theorem 39.1 this is equivalent to E == (E*)^
the space of order bounded order continuous linear functionals
on E*, the (ordered) Banach dual of E (we follow [5]
for terminology). We give a further equivalence that was
first proved for L1^!) (pi a o-finite measure) by J. P. R.
Christensen ([2], Theorem 4). Our tools include a representa-
tion theorem for a class of vector lattice due to Fremlin
([3], Theorem 6) and the following theorem of Christensen
([2], Theorem 2).

THEOREM 1. — Let N be the natural numbers and
K == {0, 1}^ with the product topology. If cp is a real valued
finitely additive set function on the subsets of N it may be
regarded in an obvious way as a function on K. If 9 is mea-
surable as such a function then cp is countably additwe as a
set function.

THEOREM 2. — A Banach lattice E is weakly sequentially
complete if and only if every <?(E*, E)-Borel measurable linear
functional on E* is <?(E*, ^-continuous.

As the sequential (r(E**, E*)-closure of E in E** con-
sists of cr(E*, E)-Borel measurable linear functionals « i f ) )
is obvious.

Conversely suppose E is weakly sequentially complete,
and L is a ^(E*, E)-Borel measurable linear functional
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on E*. We must show that L is induced by an element of
E. As E is weakly sequentially complete it follows from [5],
Korollar 1.8 and the remark above that this is equivalent to
showing that L is order bounded and order continuous,
i.e. if the net (^) in E* is directed downward to 0 then
L(^0.

L is certainly norm measurable and hence ([I], Theorem 2)
norm bounded. As E* is a Banach lattice, L is certainly
order bounded, so we must show L is order continuous.

Without loss of generality we may suppose /o ^ A > 0
for all Y ^d restrict our attention to the band, B, in E*
generated by /o which is <r(E*, Enclosed, as E has an
order continuous norm (this is equivalent to E being an
ideal in E** using [4&], Theorem 39.1, and this is certainly
true as E is a band in E**) by [4a], Theorem 36.2. The
topology <r(E'11, E) on B is the same as cr(B, E/B°) where
B° is the annihilator of B in E, so we may limit our atten-
tion to the Banach lattice E/B° and its Banach dual B; i.e.
we limit our attention to the case that E* has a weak order
unit.

Using [3], Theorem 6, we may find a locally compact
Hausdorff space S and a Radon measure (A on S such that
E* is vector lattice isomorphic to a lattice ideal in M((Ji),
the space of all equivalence classes of pi-measurable extended
real valued functions on S. We identify E* with this ideal.
Also by [3], Theorem 7, E == E*x may be identified with
the ideal {x e M([x) : Ffxd^ < oo for all fe E*}. Further
as E* has a weak order unit we may suppose 1̂  £ E*,
and hence ^A ^ E* for all Borel sets A <= S.

Fix a, e R+ and A; Borel subsets of S(i == i, 2, . . .),
oo

such that S ^'XA; ^ E*. We claim
1=1

L(2a^A,) == SL(a^).

Define 9 on subsets M of N by 9(M) = L / ^ ^'XA^?
VieM /

which is defined, as E* is an ideal in M((JL). Clearly 9 is
finitely additive as L is linear. The map

6 : Mh—— S ^CA,
i € M
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is continuous for the <r(E'11, E) topology on E* and the pro-
duct topology on K. This is because if x e E then

e (N) (M)=^(5a ,xA. ) l ^ | ^

is finite, so given s > 0 we can find a finite set F <= N with
f (1 ̂ A.\ x d[L < s. If ML, M <= N and M. -> M for

t/s \]NNF / *

the product topology we can find YO such that Y ^ To
implies My n F = M n F. Thus y ^ To implies

|6(M^)~6(M)(r.)| < s ;

i.e. 6(M^) -> 6(M) for a{E*, E). Hence 9 = L o 6 is
measurable as a real valued function on K, so is countably
additive as a set function on N, by Theorem 1, which proves
the claim.

Define v on the Borel sets in S by v(A) = L(^A)) which
is meaningful as /A G E*. If A, are disjoint Borel sets
then /yA, == ^XAp and the above claim (with a, == 1)
shows that v is countably additive. If {^(A) == 0 then
^ = 0 (as an element of E*) so ^(A) == L(^A) == 0. We
may thus apply the Radon-Nikodym theorem to find y e L^pi)
with ^(A) = | y d\L for all Borel subsets A of S (y is

»/ A _

integrable as ^ = X|^s:<p(cr)>o| e E* and

ufi}= X^^ < °°)-
We must next show that L(/*) == | /y ̂  tor all /*e E*._ _ •/ ^

This will show that y e E*^ and hence that L is order
continuous. If f e E^ (it is no loss of generality to assume
this) and s > 0 we may find Borel sets A, and a, ^ 0
with Sa^/A, ^ f < Sa^Af + sis, and hence (as E* is a
Banach lattice) ||Sa^A, — f\\ ^ s||lsll- We have

L(Sa^A.) ̂  Sa,L(xA,) == Sa, J^ /A, ̂

== ^a, J^ t/^A, d[L = j^ (Sa^A.)t/ ̂

(this last equality follows from Lebesgues9 dominated conver-
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gence theorem). As we have seen, L is bounded, so

|J; fy ̂  - L(f)\ ^ \f^ fy dy. - ^ (Sa.XA,)t/ d^\

+ |L(Sa.xA,f- Uf)\ ^ 4yh + ell L|| ills!.
Thus L{f) = j^ fy d[L for all f e E^, completing the proof.
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