A. W. WICKSTEAD

A characterization of weakly sequentially complete Banach lattices

Annales de l'institut Fourier, tome 26, nº 2 (1976), p. 25-28 http://www.numdam.org/item?id=AIF 1976 26 2 25 0>

© Annales de l'institut Fourier, 1976, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A CHARACTERIZATION OF WEAKLY SEQUENTIALLY COMPLETE BANACH LATTICES

by A. W. Wickstead

Meyer-Nieberg ([5], Korollar I.8) has given a number of properties of a Banach lattice, E, that are equivalent to weak sequential completeness of the underlying Banach space. Among these is that E is a band in E^{**}; and from [4b], Theorem 39.1 this is equivalent to $E = (E^*)^{\times}$, the space of order bounded order continuous linear functionals on E^{*}, the (ordered) Banach dual of E (we follow [5] for terminology). We give a further equivalence that was first proved for L¹(μ) (μ a σ -finite measure) by J. P. R. Christensen ([2], Theorem 4). Our tools include a representation theorem for a class of vector lattice due to Fremlin ([3], Theorem 6) and the following theorem of Christensen ([2], Theorem 2).

THEOREM 1. — Let N be the natural numbers and $K = \{0, 1\}^{N}$ with the product topology. If φ is a real valued finitely additive set function on the subsets of N it may be regarded in an obvious way as a function on K. If φ is measurable as such a function then φ is countably additive as a set function.

THEOREM 2. — A Banach lattice E is weakly sequentially complete if and only if every $\sigma(E^*, E)$ -Borel measurable linear functional on E^{*} is $\sigma(E^*, E)$ -continuous.

As the sequential $\sigma(E^{**}, E^{*})$ -closure of E in E^{**} consists of $\sigma(E^{*}, E)$ -Borel measurable linear functionals « if » is obvious.

Conversely suppose E is weakly sequentially complete, and L is a $\sigma(E^*, E)$ -Borel measurable linear functional on E*. We must show that L is induced by an element of E. As E is weakly sequentially complete it follows from [5], Korollar I.8 and the remark above that this is equivalent to showing that L is order bounded and order continuous, i.e. if the net (f_{γ}) in E* is directed downward to 0 then $L(f_{\gamma}) \rightarrow 0$.

L is certainly norm measurable and hence ([1], Theorem 2) norm bounded. As E^* is a Banach lattice, L is certainly order bounded, so we must show L is order continuous.

Without loss of generality we may suppose $f_0 \ge f_{\gamma} \ge 0$ for all γ and restrict our attention to the band, B, in E^{*} generated by f_0 which is $\sigma(E^*, E)$ -closed, as E has an order continuous norm (this is equivalent to E being an ideal in E^{**} using [4b], Theorem 39.1, and this is certainly true as E is a band in E^{**}) by [4a], Theorem 36.2. The topology $\sigma(E^*, E)$ on B is the same as $\sigma(B, E/B^0)$ where B^o is the annihilator of B in E, so we may limit our attention to the Banach lattice E/B^o and its Banach dual B; i.e. we limit our attention to the case that E^{*} has a weak order unit.

Using [3], Theorem 6, we may find a locally compact Hausdorff space Σ and a Radon measure μ on Σ such that E^* is vector lattice isomorphic to a lattice ideal in $M(\mu)$, the space of all equivalence classes of μ -measurable extended real valued functions on Σ . We identify E^* with this ideal. Also by [3], Theorem 7, $E = E^{*\times}$ may be identified with the ideal $\{x \in M(\mu) : \int_{\Sigma} fxd\mu < \infty \text{ for all } f \in E^*\}$. Further as E^* has a weak order unit we may suppose $1_{\Sigma} \in E^*$, and hence $\chi_A \in E^*$ for all Borel sets $A \subset \Sigma$.

Fix $\alpha_i \in \mathbf{R}_+$ and A_i Borel subsets of $\Sigma(i = 1, 2, ...)$, such that $\sum_{i=1}^{\infty} \alpha_i \chi_{A_i} \in E^*$. We claim

$$L(\Sigma \alpha_i \chi_{\Lambda_i}) = \Sigma L(\alpha_i \chi_{\Lambda_i}).$$

Define φ on subsets M of N by $\varphi(M) = L\left(\sum_{i \in M} \alpha_i \chi_{A_i}\right)$, which is defined, as E* is an ideal in $M(\mu)$. Clearly φ is finitely additive as L is linear. The map

$$\theta: M \longmapsto \sum_{i \in M} \alpha_i \chi_{A_i}$$

26

is continuous for the $\sigma(E^*, E)$ topology on E^* and the product topology on K. This is because if $x \in E$ then

$$\theta(\mathbf{N})(|x|) = \int_{\Sigma} \left(\sum_{\mathbf{N}} \alpha_i \chi_{\mathbf{A}_i}\right) |x| \ d\mu$$

is finite, so given $\varepsilon > 0$ we can find a finite set $F \subset N$ with $\left| \int_{\Sigma} \left(\sum_{N \setminus F} \alpha_i \chi_{A_i} \right) x \ d\mu \right| < \varepsilon$. If $M_{\gamma}, M \subset N$ and $M_{\gamma} \to M$ for the product topology we can find γ_0 such that $\gamma \ge \gamma_0$ implies $M_{\gamma} \cap F = M \cap F$. Thus $\gamma \ge \gamma_0$ implies

$$|\theta(\mathbf{M}_{\gamma})(x) - \theta(\mathbf{M})(x)| < \varepsilon;$$

i.e. $\theta(M_{\gamma}) \rightarrow \theta(M)$ for $\sigma(E^*, E)$. Hence $\varphi = L \circ \theta$ is measurable as a real valued function on K, so is countably additive as a set function on N, by Theorem 1, which proves the claim.

Define ν on the Borel sets in Σ by $\nu(A) = L(\chi_A)$, which is meaningful as $\chi_A \in E^*$. If A_i are disjoint Borel sets then $\chi_{\bigcup A_i} = \Sigma \chi_{A_i}$, and the above claim (with $\alpha_i = 1$) shows that ν is countably additive. If $\mu(A) = 0$ then $\chi_A = 0$ (as an element of E^*) so $\nu(A) = L(\chi_A) = 0$. We may thus apply the Radon-Nikodym theorem to find $y \in L^1(\mu)$ with $\nu(A) = \int_A y \, d\mu$ for all Borel subsets A of Σ (y is integrable as $f_1 = \chi_{i\sigma \in \Sigma: \Psi(\sigma) > 0} \in E^*$ and

$$\mathcal{L}(f_1) = \int_{\Sigma} y^+ d\mu < \infty \Big).$$

We must next show that $L(f) = \int_{\Sigma} fy \, d\mu$ for all $f \in E^*$. This will show that $y \in E^{*\times}$, and hence that L is order continuous. If $f \in E^*_+$ (it is no loss of generality to assume this) and $\varepsilon > 0$ we may find Borel sets A_i and $\alpha_i \ge 0$ with $\Sigma \alpha_i \chi_{A_i} \le f \le \Sigma \alpha_i \chi_{A_i} + \varepsilon 1_{\Sigma}$, and hence (as E^* is a Banach lattice) $\|\Sigma \alpha_i \chi_{A_i} - f\| \le \varepsilon \|1_{\Sigma}\|$. We have

$$L(\Sigma \alpha_i \chi_{\mathbf{A}_i}) = \Sigma \alpha_i L(\chi_{\mathbf{A}_i}) = \Sigma \alpha_i \int_{\Sigma} \chi_{\mathbf{A}_i} d\nu$$

= $\Sigma \alpha_i \int_{\Sigma} y \chi_{\mathbf{A}_i} d\mu = \int_{\Sigma} (\Sigma \alpha_i \chi_{\mathbf{A}_i}) y d\mu$

(this last equality follows from Lebesgues' dominated conver-

gence theorem). As we have seen, L is bounded, so

$$\begin{aligned} \left|\int_{\Sigma} fy \ d\mu - \mathcal{L}(f)\right| &\leq \left|\int_{\Sigma} fy \ d\mu - \int_{\Sigma} (\Sigma \alpha_i \chi_{\mathbf{A}_i}) y \ d\mu\right| \\ &+ \left|\mathcal{L}(\Sigma \alpha_i \chi_{\mathbf{A}_i}) - \mathcal{L}(f)\right| \leq \varepsilon \|y\|_1 + \varepsilon \|\mathcal{L}\| \|\mathbf{1}_{\Sigma}\|. \end{aligned}$$

Thus $L(f) = \int_{\Sigma} f y \, d\mu$ for all $f \in E_+^*$, completing the proof.

BIBLIOGRAPHY

- J. P. R. CHRISTENSEN, Borel structures in groups and semi-groups, Math. Scand., 28 (1971), 124-128.
- [2] J. P. R. CHRISTENSEN, Borel structures and a topological zero-one law, Math. Scand., 29 (1971), 245-255.
- [3] D. H. FREMLIN, Abstract Kothe spaces II, Proc. Cam. Phil. Soc., 63 (1967), 951-956.
- [4] W. A. J. LUXEMBURG and A. C. ZAANEN, Notes on Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser. A., 67 (1964) (a) 507-518, (b) 519-529.
- [5] P. MEYER-NIEBERG, Zur schwachen Kompaktheit in Banachverbanden, Math. Z., 134 (1973), 303-315.

Manuscrit reçu le 14 mai 1975 Proposé par G. Choquet.

A. W. WICKSTEAD, (*) Department of Mathematics University College Cork (Ireland).

(*) Current address. Department of Pure Mathematics The Queen's University of Belfast, Belfast BT7 1NN (Northern Ireland).