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REGULARITY OF PUSH-FORWARD OF
MONGE-AMPERE MEASURES

by Eleonora DI NEZZA & Charles FAVRE

Dedicated to Jean-Pierre Demailly on the occasion of his 60th birthday

ABSTRACT. —  We prove that the image under any dominant meromorphic
map of the Monge—Ampeére measure of a Holder continuous quasi-psh function still
possesses a Holder potential. We also discuss the case of lower regularity.

RiESUME. —  Nous démontrons que I'image par une application méromorphe
dominante d’une mesure de Monge—Ampeére d’une fonction quasi-psh et holderienne
possede aussi un potentiel holderien. Nous discutons aussi le cas de régularité plus
basse.

1. Introduction

Let (X,wx) be a compact Kidhler manifold of dimension n normalized
by the volume condition [y w% = 1. We say that a potential ¢ € L'(X)
is wx-plurisubharmonic (wx-psh for short) if locally ¢ is the sum of a
plurisubharmonic and a smooth function, and wx + dd°p > 0 in the weak
sense of currents, where d = 94 0 and d° = ﬁ(é —0) so that dd® = %65.
We denote by PSH(X,wy) the set of all wx-psh functions on X. Recall
from [13, Section 1] that the non-pluripolar Monge—Ampére measure of a
function ¢ € PSH(X,wx) is a positive measure defined as the increasing
limit

(wx +ddp)" = jggloo Lips_jy (wx 4 dd®max{p, —j})"

where the right hand side is defined using Bedford—Taylor intersection the-
ory of bounded psh functions, see [2]. By construction this measure does
not charge pluripolar sets.

Keywords: Kéhler manifolds, meromorphic map, Monge—Ampére measures.
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One of the main result of [13] states that if p is a probability measure
on X which does not charge pluripolar sets, then there exists a unique (up
to a constant) wx-psh function ¢ such that [, (wx + dd°p)™ =1 and

(L.1) w=(wx + dd)".

We denote by £(X, wx ) the set of all wx-psh functions whose non-pluripolar
Monge-Ampére measure has full mass so that any solution to (1.1) belongs
to £(X,wx).

In the same paper, Guedj and Zeriahi introduced for any p > 0 the
subset EP(X,wx) of £(X,wx) consisting of all wx-psh functions satisfying
the integrability condition ¢ € LP((wx + dd®p)™). Since wx-psh functions
are bounded from above it follows that

EP(X,wx) C £1(X,wx), forall p>q.

Observe also that any wx-psh function lying in L*> belongs to the inter-
section of all EP(X, wx).

We shall say that a probability measure which does not charge pluripolar
sets p = (wx +dd°p)™ is a Monge-Ampére measure having Holder, contin-
uous, L or EP potential for some p > 0 whenever ¢ is Holder, continuous,
L or belongs to the energy class EP(X,wx ) respectively.

Let us now consider any dominant meromorphic map f : X --+ Y where
(Y,wy) is also a compact Kédhler manifold of volume 1, and denote by m
its complex dimension. Let I" be a resolution of singularities of the graph of
f. We obtain two surjective holomorphic maps 7 : I' = X and mo : I' = Y
where 71 is bimeromorphic so that I' is a modification of a compact Kéhler
manifold. By Hironaka’s Chow lemma, see e.g. [17, Theorem 2.8] we may
suppose that 7 is a composition of blow-ups along smooth centers so that
T is itself a compact Kéahler manifold of complex dimension n. We fix any
Kéhler form wr on it.

One defines the push-forward under f of a measure p not charging
pluripolar sets as follows. Since m; is a bimeromorphism, there exist two
closed analytic subsets R C I"and V' C X such that m : T'\R — X\V isa
biholomorphism. One may thus set 7} u to be the trivial extension through
R of (m1)[f\ ppt- This measure is again a probability measure which does
not charge pluripolar sets.

We then define the probability measure fop := (m2).mjp. We observe
that since f is dominant then ms is surjective hence the preimage of a
pluripolar set in Y by w9 is again pluripolar. By the preceding discussion,
there exists ¢ € £(Y,wy) such that f.pu = (wy + ddy)™.

Our main goal is to discuss the following question.
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PROBLEM 1.1. — Suppose p is a Monge-Ampére measure having
Hélder, continuous, L or EP potential. Is it true that f.u is also a Monge—
Ampére measure of a potential lying in the same class of regularity?

This problem is hard for Monge—-Ampeére measures having either contin-
uous or L potentials since there is no known intrinsic characterization
of these measures. For these classes of regularity even the case f is the
identity map and X =Y is still open (see for example [7, Question 15]).

PROBLEM 1.2. — Suppose y is a probability measure on X not charging
pluripolar sets and write ;1 = (w + dd®p)™ = (' + dd®")"
two Kahler forms of volume 1. Is it true that ¢ is continuous (resp. L>) iff

)
@' is!

where w,w’ are

Remark. — A variant of Problem 1.1 has been recently investigated in [1,
18]. In particular, one can find in these papers a criterion on the singularities
of an algebraic map f : X — Y which ensures that the push-forward of any
continuous volume form remains continuous. We refer to these articles for
the precise statements and for some far-reaching generalizations of them
over any local fields.

Intrinsic characterizations of Monge—Ampeére measures of Holder func-
tions are given by [4] and [9], and in the context of Hermitian compact
manifolds by [15]. A characterization of Monge—Ampeére measures of func-
tions in the energy class P is also obtained in [13, Theorem C] so that
Problem 1.2 has a positive answer for these two classes of regularity, see [5,
Theorem 4.1]. Problem 1.1 remains though quite subtle. If we restrict our
attention to the regularity in the P energy classes, then the answer is no
in general. Suppose that 7 : X — P? is the blow-up at some point p € P2,
and let E = 7~ !(p). It was observed by the first author in [6, Proposi-
tion B] that there exists a probability measure y = (wx + ddp)? with
p € EY(X,wx) but T = (wps + dd)? with ¢ ¢ EY(P? wrg), where
wrg denotes the Fubini Study metric on P? and wy is a Kéhler form.

In this note we answer Problem 1.1 in two situations. We first treat the
case  is the Monge-Ampeére of a Holder function.

THEOREM 1.3. — Let f: X --» Y be any dominant meromorphic map
between two compact Kédhler manifolds. If i is a Monge—Ampére measure
having a Holder potential with Hélder exponent «, then f.u is a Monge—
Ampére measure having a Holder potential with Holder exponent bounded
by Cad™(X) for some constant C' > 0 depending only on f.

TOME 68 (2018), FASCICULE 7
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We expect that the technics developed in the paper of Kolodziej—
Nguyen [15] in the present volume allows one to extend the previous result
to arbitrary compact hermitian manifolds.

Next we treat the case the image of the map has dimension 1.

THEOREM 1.4. — Let f : X --» Y be any dominant meromorphic map
from a compact Ké&hler manifold to a compact Riemann surface. If p is
a Monge-Ampére measure having a Hélder, C°, L>, £P potential respec-
tively, then f.p is a Monge—Ampére measure having a potential lying in
the same regularity class.

Motivations for studying this question come from the analysis of degen-
erating measures on families of projective manifolds developed in [11]. Let
us briefly recall the setting of that paper. Let X be a smooth connected
complex manifold of dimension n+ 1, and 7: X — I be a flat proper ana-
lytic map over the unit disk which is a submersion over the punctured disk
and has connected fibers. We assume that X is Kéhler so that each fiber
X; = 7 1(t) is also Kihler.

A tame family of Monge-Ampeére measures is by definition a family of
positive measures {u }rep each supported on X; that can be written under
the form

e = p«(T%,),

where T is a positive closed (1, 1)-current having local Holder continuous
potentials and defined on a complex manifold X’ which admits a proper
bimeromorphic morphism p: X’ — X which is an isomorphism over X :=
7 1(D*). Tt follows from [3, Corollary 1.6] that the family of measures
py :=T|%, in X" is continuous so that p; converges to a positive measure
o supported on X{ as t — 0. It follows that the convergence lim;_o i = 1o
also holds in X.

As a corollary of the previous results we show the limiting measure pq
is of a very special kind:

COROLLARY 1.5. — Let {u¢ }tep be any tame family of Monge-Ampére
measures, so that pu; — po ast — 0.

Then there exist a finite collection of closed subvarieties {V;}i=o,... n of
Xy and for each index i a positive measure v; supported on V; such that

N
Mo = E Vi
i=1

and v; is a Monge—Ampeére measure on V; having a Hélder potential.

ANNALES DE L’INSTITUT FOURIER
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In the previous statement, it may happen that V; is singular, in which
case it is understood that the pull-back of v; to a (Kéahler) resolution of V;
is a Monge—Ampére measure having a Holder continuous potential.

Acknowledgement. We thank Ahmed Zeriahi for useful discussions on
these problems.

2. Images of Monge—Ampére measures having a Holder
potential: proof of Theorem 1.3

As already mentioned, a dominant meromorphic map f: X --» Y can
be decomposed as f = mg 0 7r1_1, where 7: I' — X is holomorphic and
bimeromorphic and me: I' — Y is a surjective holomorphic map. Recall
that one can assume I" to be Kéhler, and that f.u := (mg).7] 1.

We first claim that if p is the Monge-Ampere of a Holder continuous
function then 75 too. Let ¢ € PSH(X,wx) be the Holder potential such
that ¢ = (wx + dd®p)™. It then follows from Bedford and Taylor theory
that 7 = (7fwx +dd°mip)". Since Tjwx is a semipositive smooth form,
there exists a positive constant C' > 0 such that 7] < (Cwr 4+ dd®m*p)”
where wr is a Kéhler form on I', and [4, Theorem 4.3] implies that fi := 75 p
is the Monge—Ampere measure of a Holder continuous Cwp-psh function.
This proves the claim. We are then left to prove that (m2)./f is the Monge—
Ampeére measure of a Holder potential. This will be done in Lemma 2.4.

We first show that the push-forward of a smooth volume form has density
in L'*¢, for some constant ¢ > 0 depending only on f.

PROPOSITION 2.1. — Let f: X — Y be a surjective holomorphic map.
Then f.w% = gwi with g € L (w}), for some € > 0.

This result is basically [19, Proposition 3.2] (see also [20, Section 2]).
We give nevertheless a detailed proof for reader’s convenience. Pick any
coherent ideal sheaf Z C Oy, and denote by V(Z) = supp(Ox/Z) the
closed analytic subvariety of X associated to Z. Let {U;}}, be a finite
open covering of X by balls and {V;}; be a subcovering such that V; C U;.
The analytic sheaf 7 is globally generated on each U; so that we can find
holomorphic functions such that Z|y, = (hgi), cee h,(f)) -Oy,. Let {p;} be a
partition of unity subordinate to V;. We then define

N

k
(2.1) 7= Zﬂi Z |h§'i)|2
=1

i=1

TOME 68 (2018), FASCICULE 7
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Then ®7: X — Ry is a smooth function which vanishes exactly on V(7).
Observe that if &7 and @’ are defined using two different coverings, then
there exists C' > 0 such that

1

5@’1 < Pz < C9P7.

In the sequel we shall abuse notation and not write the dependence of &7
in terms of the local generators of the ideal sheaf. The logarithm of the
obtained function is then well-defined up to a bounded function so that all
statements in the next Lemma make sense.

LEMMA 2.2. — Let Z,J C Ox be two coherent ideal sheafs. The fol-
lowings hold:
(1) there exists ¢ > 0 such that |®z|~¢ € L'(X);
(2) if T C J then ®5 > c¢®z for some positive ¢ > 0;
(3) if V(J) C V(T) then there exists c,0 > 0 such that ® 7 > c ®%;
(4) given f: X — Y a holomorphic surjective map and a coherent ideal
sheaf J C Oy, then ®«5 = & o f (for a suitable choice of local
generators of J and f*J).

Proof. — Using a resolution of singularities of Z, one sees that the state-
ment in (1) reduces to show that |z1|~¢ is locally integrable for some ¢ > 0,
and this is the case if we choose € small enough. The statements in (2)
and (4) follow straightforward from the definition in (2.1). The state-
ment in (3) is a consequence of Lojasiewicz theorem, see e.g. [16, Theo-
rem 7.2]. O

LEMMA 2.3. — Let f: X — Y be a holomorphic surjective map and let
T C Ox be a coherent ideal sheaf. Then there exists a coherent ideal sheaf
J C Oy, and constants c,0 > 0 such that for any y € Y we have

inf B > cd?
vef-i) ~ 0

Proof. — Let J C Oy be the coherent ideal sheaf of holomorphic func-
tions vanishing on the set f(V(Z)) which is analytic since f is proper. Ob-
serve that V(f*J) = f~1(V(J)) D V(Z), so that Lemma 2.2(3) and (4)
insure that there exist ¢, 0 > 0 such that

@I C‘Pfj—c((l)jof)
Hence the conclusion. O

Proof of Proposition 2.1. — Recall that Sard’s theorem implies the ex-
istence of a closed subvariety S C Y such that f: X\ f71(S) - Y\ Sisa
submersion.

ANNALES DE L’INSTITUT FOURIER
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We first prove that f.w% is absolutely continuous w.r.t. wy'. We need to
check that wi?(E) = 0 implies f.w%(E) = 0 for any Borel subset £ C Y.
As S and f~1(S) have volume zero one may assume that f is a submersion
in which case the claim follows from Fubini’s theorem.

Radon-Nikodym theorem now guarantees that f.w% = gwy’ for some
0 < ge LY(Y). We want to show that the integral

[y = [ srus = [ (rorey
Y Y X

is finite for some € > 0 small enough. Consider the smooth function ¢(x) :=

* m n—m
frwy Awly

— (z), and set ¢(y) := inf,er-1(y) @(x) so that ¢ > f*¢. We claim
that for any y € Y

(2.2) 9(y) < =—,

for some constant ¢ > 0. Let x be a test function (i.e. a non negative smooth
function) on Y, then

/xgwi&:/ f*xw?<=/ f Xf*wQIAw?{m
Y X X ¢

o) [ Ky

where ¢ := C(f) = ff,l(y) wy ™ is the volume of a fiber over a generic

point y € Y. The claim is thus proved. Lemma 2.2(1) and (4) combined
with Lemma 2.3 then insure that there exists € > 0 such that (f*g)° €
LY (wh). O

Theorem 1.3 is reduced to the following result which relies in an essential
way on Proposition 2.1.

PRrROPOSITION 2.4. — Suppose f: X — Y is a surjective holomorphic
map between compact Kéahler manifolds. If p is a positive measure on X
with Holder continuous potentials, then f.u is a positive measure on Y
with Hélder potentials.

Observe that by multiplying wx by a suitable positive constant we may
assume that f*wy < wx. The volume normalization is no longer satisfied
but a positive multiple of p is still the Monge—Ampeére measure of a wx-
psh Holder continuous function. Write fiu = (wy + dd°y®)™ with ¢ €
PSH(Y, wy ).

TOME 68 (2018), FASCICULE 7
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We claim that there exists C' > 0, and € > 0 such that for all u €
PSH(Y,wy) with [, uw% =0

(2.3) /Yexp(—su)d(f*u) <C.

Indeed, for any v € PSH(Y,wy ) we have that

/e_E“d(f*u)=/ el dy.
Y X

Now the integral fX e—¢(°f) dy is uniformly bounded by [10, Theorem 1.1]
since:

e 1 has Holder continuous potentials;

o f*wy <wy hence uo f € PSH(X,wx);

e and the set of functions in PSH(X,wx) such that [, uw’ = 0 is
compact by [12, Proposition 2.6].

This proves our claim. Using the terminology of [9] this means that f.p is
moderate. It is worth mentioning that if [7, Question 16] holds true then the
conclusion of Proposition 2.4 would follow immediately since any moderate
measure would have a Holder continuous potential. To get around this
problem we use the characterization of measures with Holder potentials
given by Dinh and Nguyen.

Proof of Proposition 2.4. — By [9, Lemma 3.3], f.u is the Monge—
Ampere measure of a Holder potential if and only if there exist ¢ > 1 and
B € (0,1) such that

@) [ uvldfp < ema (o= ol - ol )
v Y

for all u,v € PSH(Y,wy). By assumption on p we know there exist ¢ > 1
and § € (0,1) such that [, |u—v|df.,p = [ [f*u— f*v|du, and

mﬁyéuwffme<amxmﬁu—ﬁﬂp@@mﬁu—ﬁﬂiw@)

Also, Proposition 2.1 gives
(2.6) / Fou— ool = / = 0] gt < gl oyl — ol o or)
X Y

where p is the conjugate exponent of 1+ ¢. Set C; := ||g||L1+E(w;) < 4o00.
Up to replace C; with Cy 4 1 we can assume that Cy > 1.

ANNALES DE L’INSTITUT FOURIER
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Denote by m,, := fY uwy and observe that v’ := u —my, v :=v—m,

satisf v wh =0= [, vw%. Then the triangle inequality gives
Y Jx W Wx x ¥V Wy g v e

1/p
l— ol gy = ( 16 =)+ - mv>|pw¢)
(2.7) Y

/

lu" — U/”LP(UJ;“,') + [ — M|

|
‘ !
At this point, we make use of [9, Proposition 3.2] (that holds for normalized
potentials) to replace the LP-norm with the L!'-norm. We then infer the
existence of a constant ¢’ > 1 such that

<
<

|u — UI”LP(UJ;;) + ||u — UHLl(w;i)'

p—1 i
" = /|| g < ¢ max(L, —log o/ — o'l wg) 7 llu' = 0'l1 1 -

When ¢ := [[u" — || L1(p) = 1/e we clearly have

1
||u/ _ U/HLP(UJ;) < C/Hu/ _ v/||£1(w;)7

whereas for any integer N € N*, there exists a constant ¢y > 0 such that

—logt < ent™ YN when t < 1/e, hence

/ / 1! !/ !/ %(17%_1)
[o" = vl Lo y) <l =0l Einy -
As [[u" = v'|lpiwn) < 2[u —vl|piwy), combining (2.5), (2.6) and (2.7) we
get

175w = Follna gy < Cmax (Jlu = vlFs = vl )

with 3 = % (1- p—;[l) By [9, Lemma 3.3] f.p = (wy + dd°y®)™ where 9 is
a Holder continuous function.

To get a bound on the Holder regularity of i, one argues as follows.
First if g = (w + dd®p)™ with ¢ a a-Holder potential, and 7: ' — X is a
proper modification, then 7*u is dominated by a Monge-Ampeére measure
with a-Holder potential, and [4, Proposition 3.3(ii)] is satisfied with b =
2a/(a + 2n) by [4, Theorem 4.3(iii)]. Hence, following the proof of [4,
Theorem], we see that 7*u is a Monge-Ampeére measure of a a;-Holder
continuous potential with ay < b/(n + 1) (see Remark below for more
details about the latter statement).

By [9, Proposition 4.1], (2.5) holds with 5 = o} /(2 + af), and (2.4) is
then satisfied for any 5 < /p so that f.u is a Monge-Ampére measure
with G-Holder potential for any & < 23/(m + 1), see the discussion on [9,
p. 83]. Combining all these estimates we see that any

a'ﬂ

p(m + 1)(a/2 +n)*(n+ 1)"

a <

TOME 68 (2018), FASCICULE 7
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works where p is the conjugate of the larger constant € > 0 for which
Proposition 2.1 holds. O

Remark. — We borrow notations from the proof of [4, Theorem A]. Fix
a1 < b/(n+1) and choose € > 0 such that a1 < a < a9 < b—ag(n+e). By
the previous arguments we know that condition (4¢) in [4, Proposition 3.3]
holds, i.e. for any ¢ € PSH(T,wr), we have ||ps¢ — ¢[|p1(nep) = O(6Y),
where b = 2a/(a + 2n). In particular, this gives

7 u(Ey) < e16°790,

Let g € L'(7* 1) be defined as g = 0 on Ey and g = c on ' \ Ey where c is
a positive constant such that 7*u(T') = [ gd(7*p). An easy computation
gives that ¢ = 7*u(T")/7*u(T \ Ey). Let v € PSH(I',wr) be the bounded
solution of the Monge-Ampére equation (wr + dd°v)™ = g - 7*u. Observe
that

11— gllpr(rep) = / d7r*u+/ |1 —c|dr*p = 2/ dr*p < 2,607,
Eo F\Eo Ey

Since m*u = (wr+dd°@)" satisfies the H(oo) property we can still apply [8,
Theorem 1.1] and get
b—a
(3 = vl < c36 e .

The exact same arguments as in [4, Theorem A] then insure that the Holder
exponent of @ is a;.

3. Over a one-dimensional base: proof of Theorem 1.4

In this section we treat Problem 1.1 in the case the base is a Riemann
surface.

We start with the case of a surjective holomorphic map f: X — Y from
a Kahler compact manifold to a compact Riemann surface.

Let 4 = (wx + dd®p)™ be a Monge-Ampére measure of a continuous
wx-psh function ¢. Suppose vy, v is a family of wx-psh functions such that
v — v in L, then

/deu
X

=/ vk (wx +ddp)"
X

n—1
=/ vkw}+2/ @ddcvk/\wg(/\(wx-kddﬂp)n*j*l_>/ vy
X j=07%X X

ANNALES DE L’INSTITUT FOURIER



REGULARITY OF MONGE-AMPERE MEASURES 2975

by [3, Corollary 1.6 (a)]. Observe that in the last equality we used the fact
that
n—1
(wx +ddp)" —wy = Z ddep A Wl A (wx + ddeép)n i1
§=0
and Stokes’ theorem.

Normalize the Kéhler form on Y such that [wy = 1, and pick any
sequence Yr — Yoo € Y. Let wy be the solutions of the equations Awy =
8y, —wy with sup wg = 0 so that w(y) —log |y — yx| is continuous in local
coordinates near yi. Write fiu = wy + dd®y so that

/kad(f*u)Z/kawar/Ywﬁwk=¢(yk)+/y(wk—w)wy.

Since wy — weo in LY = for all p < oo, Proposition 2.1 implies that

ffwr = f*ws in the L' topology, so that the argument above gives
Jy we d(fap) = [ Fropdp = [ ffweo di = [ woo d(fipr) We then con-
clude that ¥ (yr) — ¥ (ys). Hence % is continuous.

Suppose then that p is locally the Monge-Ampeére of a bounded psh
function, and pick any subharmonic function u defined in a neighborhood
of a point y € Y. Then f*u is again psh in a neighborhood of f~!(y), and
the standard Chern—Levine-Nirenberg inequalities imply that f*u € L' ()
so that u € L'(f.u) with a norm depending only on the L'-norm of w. It
follows that f,u is locally the laplacian of a bounded subharmonic function.

Finally, assume p = (wx + dd°p)™ for some ¢ € EP(X,wx). By [13,
Theorem C] this is equivalent to have that £P(X,wx) C LP(u). Write as
usual fou = (wy +dd) with ¢ € E(Y,wy).

We claim that v € EP(Y,wy ) implies f*u € EP(X,wx ). Indeed, without
loss of generality we can assume that 2 = wx — ffwy is a Kéhler form
and by the multilinearity of the non-pluripolar product we have

/ |f*u|P(wX +ddcf*u)" :/ |f*u\p(f*o.1y +Q+dd0f*u)n
X X
= / | ulP (Q" + (ffwy +dd°ffu) AQ" )
X

where the last identity follows from the fact that (f*wy + dd¢f*u)? = 0
for j > 1. The term [y [f*u[?Q™ is bounded thanks to the integrabil-
ity properties of quasi-plurisubharmonic functions w.r.t. volume forms [14,
Theorem 1.47]; while the term

[ Aoy +adrwaet =) [ jup @y +ddow)
X Y

TOME 68 (2018), FASCICULE 7



2976 Eleonora DI NEZZA & Charles FAVRE

is finite since u € EP(Y,wy ). This proves the claim.
Now, given any u € EP(Y,wy) we have

/hmaﬂm=/WﬁmmM<+m
Y X

since f*u € EP(X,wx) C LP(u). The conclusion follows from [13, Theo-
rem CJ.

Consider now any dominant meromorphic map f: X --+ Y from a Kéh-
ler compact manifold to a compact Riemann surface. As above we decom-
pose f such that f.u = (7).} for any positive measure p on X.

Assume that p has continuous potentials. If we write p = (wx + ddp)"
then mip = (rfwx + dd°p o m)" < (Cwr + dd°p o m)™ = [ where fi
has a continuous potential. This implies f.pu < (m2).ft. Observe that by
the previous arguments the measure (m3).fi has continuous potential. It
follows that locally f.p = Av < Au where u, v are subharmonic functions.
It follows that v is the sum of a continuous function and the opposite of
a subharmonic (hence u.s.c.) function. Since it is also u.s.c we conclude to
its continuity.

When p has bounded potentials, the same argument applies noting that
subharmonic functions are always bounded from above which implies v to
be bounded.

Finally, we consider the case where p is the Monge—Ampeére measure
of p € EP(X,wx). We first observe that given v € EP(T',wr) we have
(m1)sv € EP(X,wx). Indeed,

/ lvor tP(wx +ddvorn )" = / [P (rfwx + ddv)™
X r
< / [v|P(Cwr 4+ ddv)" < 400.
r

This and the previous arguments give that if u € EP(Y,wy) then fiu =
(m1)smiu € EP(X,wx ), hence

/%Mwm:/wqmw<+m
Y X

It follows from [13, Theorem C] that f.p is the Monge—Ampére measure of
a function in EP(Y, wy ).
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4. The case of submersions

In this section we let (X, wy), (Y,wy) be two compact Kéhler manifolds
of dimension n and m, respectively and normalized such that | Wy =1=

fY wy

PropPoOSITION 4.1. — Let f: X — Y be a submersion. Then, u €
EP(Y,wy) implies f*u € EP(X,wx). In particular, if a probability mea-
sure p is the Monge-Ampére of a function in EP then also f.u has also a
potential in EP.

Proof. — Since f is a submersion we can assume that there is a finite
number of open neighbourhoods U; such that X C Ué\’:o Uj, flu; (z,w) = 2
where z = (21,...,2m) and w = (zp41, ..., 2,). Moreover we can assume
that on each U; we have

wngj%(dz/\d2+dw/\dzI/), 7dz/\dz A frwy

where A;,C; > 1and dzAdz, dwAdw are short notations for Z;nzl dzjAdz;
and Y7, ., dzi A dZg, respectively. We then write

/ |frulP(wx +dd°ffu)”
X
N ; ; n
< E / | [ ul? <dez ANdz + Cj=dw Adw + ddcf*u>
j=1"Uj 2 2

N . n
§ L — c px

. n—~¢
—ZZ/ |frul? (A f*wy +dd® fru) A (cj;dedw>

j=1+¢=0

z_:/ |f* u\p A'f wy +ddef* u) (Cj;dw/\d@> ) .

The above integral is then finite because by assumption v € EP(Y, Awy )
forany A >1

The last statement follows from the same arguments in the last part of
the proof in the previous section. (|
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5. Tame families of Monge—Ampeére measures: proof of
Corollary 1.5

Recall the setting from the introduction: X is a smooth connected com-
plex manifold of dimension n + 1, and 7w: X — D is a flat proper analytic
map over the unit disk which is a submersion over the punctured disk and
has connected fibers. We let p: X’ — X be a proper bi-meromorphic map
from a smooth complex manifold X’ which is an isomorphism over 7—!(ID*).

We let T be any closed positive (1,1)-current on X’ admitting local
Holder continuous potentials. Observe that by e.g. [3, Corollary 1.6] we
have

wy =ddlog|rop—t| AT" — pf = dd®log T op| AT".

Let us now analyze the structure of the positive measure g := p,p(. First
observe that puf, can be decomposed as a finite sum of positive measures
Wy = (T|g)™ where the sum is taken over all irreducible components E
of X. Each of these measures is locally the Monge-Ampere of a Holder
continuous psh function.

Write V' := (E). Since E is irreducible, V is also an irreducible (possi-
bly singular) subvariety of dimension ¢. To conclude the proof it remains
to show that p,(pz) is the Monge-Ampére measure of Holder continuous
function that is locally the sum of a smooth and psh function. More pre-
cisely, one needs to show that p.(u) does not charge any proper algebraic
subset of V', and given any resolution of singularities w: V' — V the pull-
back measure @*(p.(i;)) can be locally written as (dd®u)® where u is a
Holder psh function on V.

This follows from Theorem 1.3 applied to any resolution of singularities
V' of V and to any E’ which admits a birational morphism E’ — E such
that the map E’ — V' induced by p is also a morphism.
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