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PURITY FOR FAMILIES OF GALOIS
REPRESENTATIONS

by Jyoti Prakash SAHA

Abstract. — We formulate a notion of purity for p-adic big Galois represen-
tations and pseudorepresentations of Weil groups of `-adic number fields for ` 6= p.
This is obtained by showing that all powers of the monodromy of any big Galois
representation stay “as large as possible” under pure specializations. Using purity
for families, we improve a part of the local Langlands correspondence for GLn in
families formulated by Emerton and Helm. The role of purity for families in the
study of variation of local Euler factors, local automorphic types along irreducible
components, intersection points of irreducible components of p-adic families of au-
tomorphic Galois representations is illustrated using the examples of Hida families
and eigenvarieties.
Résumé. — Nous formulons une notion de pureté pour les familles p-adiques de

représentations galoisiennes et pseudo-caractères du groupe de Weil d’un corps de
nombres `-adiques pour ` 6= p. Ceci est obtenu en montrant que tous les puissances
de la monodromie de toute représentation galoisienne restent aussi grandes que
possible après spécialisations pures. En utilisant la pureté pour les familles, nous
améliorons une partie de la correspondance de Langlands locale pour GLn en fa-
milles formulée par Emerton et Helm. De plus, en utilisant les exemples de familles
de Hida et variétés de Hecke, nous illustrons le rôle de pureté pour les familles
dans l’étude de la variation des facteurs d’Euler locaux, types automorphes locaux
le long des composantes irréductibles, les points d’intersection des composantes
irréductibles de familles de représentations galoisiennes automorphes.

1. Introduction

1.1. Motivation

Let r be a geometric Galois representation of the absolute Galois group
of a number field with coefficients in Qp. Then the restriction rv of r to

Keywords: p-adic families of automorphic forms, Pure representations, Local Langlands
correspondence, Euler factors.
Math. classification: 11F41, 11F55, 11F80.
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the decomposition group at any finite place v not dividing p is potentially
unipotent by Grothendieck’s monodromy theorem (see [49, pp. 515–516]).
Given a projective smooth variety X over a finite extension K of Q`, the
weight-monodromy conjecture ([35, Conjecture 3.9]) says that for any prime
p 6= ` and any integer i > 0, the Gal(K/K)-representation Hi

ét(XQ`
,Qp) is

pure of weight i, i.e., the i-th shift of the associated monodromy filtration
coincides with the associated weight filtration (see Definition 2.10). When
r is irreducible, the representation rv is expected to be pure. The Galois
representations attached to cuspidal automorphic representations (which
are algebraic in the sense of [13, Definition 1.8]) by the Langlands corre-
spondence (which is often conjectural) provide ample examples of geometric
representations. The purity of restrictions of p-adic automorphic Galois rep-
resentations to decomposition groups at places outside p is known in many
cases due to works of Carayol [9], Harris and Taylor [30], Blasius [4], Tay-
lor and Yoshida [54], Shin [52], Caraiani [8], Scholze [47], Clozel [14] et al.
Following works of Hida [31, 32, 34], Mazur [39], Coleman and Mazur [15],
Chenevier [10], Bellaïche and Chenevier [2] et al., automorphic Galois rep-
resentations are believed to live in p-adic families. Thus it is desirable to
have a notion of purity for families. The goal of this article is to provide a
formulation of this notion and to discuss its applications to p-adic families
of Galois representations.

1.2. Purity for families

The most naive way to formulate purity for big Galois representations
would be to relate the monodromy filtration with the weight filtration.
However the Frobenius eigenvalues on a big Galois representation are el-
ements of a ring of large Krull dimension and are not algebraic numbers
in general, precluding the possibility of considering the weight filtration.
Thus a formulation of purity for big Galois representations is not straight-
forward. On the other hand, it is natural to expect that such a formulation
should include a compatibility statement at pure specializations.

This formulation is achieved in Theorem 3.1, which we call purity for
big Galois representations because it says that the structures of Frobenius-
semisimplifications of Weil–Deligne parametrizations of pure specializations
of a (p-adic) big Galois representation (of the Weil group of an `-adic num-
ber field with ` 6= p) are “rigid”. In other words, it says that given a pure
Weil–Deligne representation, its lifts to Weil–Deligne representations over
integral domains have the “same structure”.

ANNALES DE L’INSTITUT FOURIER



PURITY FOR FAMILIES 881

The eigenvarieties are an important source of examples of families of
p-adic Galois representations. The traces of the Galois representations at-
tached to the arithmetic points of an eigenvariety are interpolated by a
pseudorepresentation defined over the global sections of the eigenvariety.
Thus a notion of purity for pseudorepresentations is indispensable for the
understanding of various local properties of the arithmetic points of eigen-
varieties. This is provided by Theorem 4.3, which we call purity for pseu-
dorepresentations. It says that given an O-valued pseudorepresentation T
of the Weil group of an `-adic number field (where O is a domain over Q),
the Frobenius-semisimplification of two Weil–Deligne representations over
two domains (containing O as a subalgebra) have the “same structure” if
their traces are equal to T and each of them has a pure specialization. This
is deduced using purity for big Galois representations.
By [3, Lemma 7.8.11], around each nonempty admissible open affinoid

subset U , the pseudorepresentation defined over the global sections of an
eigenvariety lifts to a Galois representation on a finite type module over
some integral extension of the normalization of O(U). But this module is
not known to be free over its coefficient ring. So Theorem 4.3 cannot be ap-
plied to eigenvarieties to study the local properties of all arithmetic points.
However the local properties of certain type of arithmetic points can be
described using Theorem 4.5. For example, if the Galois representations
attached to the arithmetic points are absolutely irreducible and their re-
strictions to the decomposition group Gw at a finite place w - p are pure,
then the structure of the Frobenius-semisimplification of the Weil–Deligne
parametrization of ρz|Gw is “rigid” when z varies along an irreducible com-
ponent of an eigenvariety (here ρz denotes the p-adic Galois representation
attached to the arithmetic point z). Henceforth, by purity for families, we
refer to Theorems 3.1, 4.3, 4.5.
In Theorem 1.1 below, we state a part of Theorem 3.1. Let p, ` be two

distinct primes, K be a finite extension of Q` and WK denote the Weil
group of K. The Frobenius-semisimplification of a Weil–Deligne represen-
tation V of WK is denoted by V Fr-ss. Let O be a domain over Q with
fraction field L . Suppose (ρ,N) is a Weil–Deligne representation of WK

on On where n is a positive integer. Such representations arise as Weil–
Deligne parametrization (tensored with Q) of representations of WK on
free modules of finite type over local rings with finite residue fields of char-
acteristic p (resp. affinoid algebras) which are continuous with respect to
the maximal ideal adic topology (resp. the Banach algebra topology). Note
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that these type of representations of WK admit Weil–Deligne parametriza-
tion by Grothendieck’s monodromy theorem, see [49, pp. 515–516] (resp. [3,
Lemma 7.8.14]). Denote by V the Weil–Deligne representation (ρ,N)⊗OL .
Let VFr-ss be isomorphic to the direct sum ⊕mi=1Spti(ri)/L of special rep-
resentations (see Definition 2.3) where m, t1 6 t2 6 · · · 6 tm are positive
integers, r1, · · · , rm are irreducible Frobenius-semisimple representations of
WK over O intal. Given a field E and a map f : O → E, the Weil–Deligne
representation (ρ,N) ⊗O,f E is denoted by Vf . We fix an isomorphism
ιp : Qp ' C and let rec denote the reciprocity map.

Theorem 1.1 (Purity for big Galois representations). — Let λ : O →
Qp be a map such that Vλ is pure. Then the following hold.

(1) The rank of no power of the monodromy N decreases after special-
izing at λ.

(2) The Weil–Deligne representations V Fr-ss
λ and ⊕mi=1Spti(λ

intal◦ri)/Qp
are isomorphic.

(3) The polynomial Eul(V, X)−1 has coefficients in O int and its spe-
cialization under λintal is Eul(Vλ, X)−1.

(4) If ξ : O → Qp is a map such that Vξ is pure, then the automorphic
types of rec−1(ιp(V Fr-ss

ξ )) and rec−1(ιp(V Fr-ss
λ )) are the same.

Moreover, for any field K and any map µ : O → K with λ(kerµ) = 0, the
Weil–Deligne representation (Vµ⊗KK)Fr-ss is isomorphic to⊕mi=1Spti(µ

intal◦
ri)/K.

1.3. Applications of purity for families

We explain the role of Theorems 3.1, 4.3, 4.5 in the study of some arith-
metic aspects of p-adic families of Galois representations, for example, the
local Langlands correspondence for GLn in families, the local automorphic
types of arithmetic points of p-adic families, the geometry of the underlying
spaces of families etc. (see Theorems 5.3, 6.2, 6.4, 6.7).

1.3.1. Local Langlands correspondence for GLn in families

The local Langlands correspondence was proved by Harris and Tay-
lor [30]. It is extended to p-adic families of representations of GK =
Gal(K/K) by Emerton and Helm in [23]. They show that given a contin-
uous Galois representation r : GK → GLn(A) (where A is a complete re-
duced p-torsion free Noetherian local ring with finite residue field of charac-
teristic p), there exists at most one (up to isomorphism) admissible smooth
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GLn(K)-representation V over A, which interpolates the Breuil–Schneider
modified local Langlands correspondence along irreducible components of
SpecA (see [23, Theorem 1.2.1] for the precise statement). Denote the
residue field of a prime p of A by κ(p). When V exists, it also interpolates
the GLn(K)-representation attached to κ(p)⊗A r via the Breuil–Schneider
modified local Langlands correspondence whenever p is a prime ideal of
A[1/p] containing only one minimal prime ideal of A[1/p] and the rank
of no power of the monodromy of r degenerates under mod p reduction
([23, Theorem 6.2.5] gives the precise statement). Combining this result
with Theorem 3.1, we prove in Theorem 5.3 that this interpolation prop-
erty holds if p is a prime ideal of A[1/p] containing only one minimal prime
ideal of A[1/p] and p is contained in a prime q of A[1/p] such that κ(q)⊗A r
is pure.
Hida’s theory of ordinary automorphic representations provides continu-

ous representations of absolute Galois groups of number fields with coeffi-
cients in rings of the form A. So their restrictions to decomposition groups
at places not dividing p give representations of the form r, to which Theo-
rem 5.3 apply. On the other hand, overconvergent forms also form families,
although of rather different nature, for instance, there are examples of such
families whose coefficient rings are not local (and there are also families of
overconvergent forms defined over local rings, see [1]). The local Langlands
correspondence is not yet extended to families defined over non-local rings
or over affinoid algebras. However, the coefficient rings O,O,O′ as in The-
orems 3.1, 4.3, 4.5 are quite general, for instance, these are not assumed
to be local. So once a notion of local Langlands correspondence for more
general families is established, it is likely that one could use Theorems 3.1,
4.3, 4.5 to show that the extension (as in [23, §4.2]) of the Breuil–Schneider
modified local Langlands correspondence is interpolated at the primes con-
tained in kernels of pure specializations.

1.3.2. Hida families and eigenvarieties

Given a p-adic family of Galois representations of the absolute Galois
group of a number field, the variation of the Frobenius-semisimplifications
of the Weil–Deligne parametrizations of the local Galois representations
attached to the members at the finite places outside p can be studied using
Theorems 3.1, 4.3, 4.5. Thus purity for families illustrates the variation of
local Euler factors of the arithmetic points of p-adic families of automorphic
Galois representations and also the variation of local automorphic types of
arithmetic points when local-global compatibility is known. In Section 6,

TOME 67 (2017), FASCICULE 2
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we explain this variation using examples of Hida family of cusp forms, Hida
family of ordinary automorphic representations of definite unitary groups
and eigenvariety for definite unitary groups. We refer to Theorems 6.2,
6.4, 6.7 for the precise statements. Roughly speaking, these three results
state that the structure of the local Galois representations attached to
the arithmetic points of any given irreducible component of these families
are constant (under some hypotheses). For related results, we refer to [24,
Proposition 2.2.4], [40, §12.7.14], [43, Remark 2.4], [26, Lemma 2.14], [25,
Lemma 3.9], [3, §7.5.3, 7.8.4], [11, Lemma 4.5], [45, Theorem A].

1.4. Notations

For every field F , we fix an algebraic closure F of it and denote by GF
the Galois group Gal(F/F ). For a finite place v of a number field E, the
decomposition group Gal(Ev/Ev) is denoted by Gv. Let Wv ⊂ Gv (resp.
Iv ⊂ Gv) denote the Weil group (resp. inertia group) and Frv ∈ Gv/Iv
denote the geometric Frobenius element. We fix embedding ip : Q ↪→ Qp
once and for all. The fraction field of a domain A is denoted by Q(A),
the field Q(A) is denoted by Q(A). The integral closure of a domain R

in Q(R) (resp. Q(R)) is denoted by Rint (resp. Rintal). If f : R → S is
a map between two domains, then the map f has an extension to a map
Rintal → Sintal. We fix one such map and denote it by f intal. The residue
field of a prime p of a ring R is denoted by κ(p) and the mod p reduction
map is denoted by πp.

2. Local Galois representations

Let q denote the cardinality of the residue field k of the ring of integers
OK of K. Fix an element φ ∈ GK which lifts the geometric Frobenius
Frk ∈ Gk. Let $ denote a uniformizer of OK and valK : K× � Z be the
$-adic valuation. Let | · |K := q−valK( · ) be the corresponding norm. The
Weil group WK is defined as the subgroup of GK consisting of elements
which map to an integral power of Frk in Gk. Its topology is determined by
decreeing that IK is open and has its subspace topology induced from GK .
The Artin map ArtK : K× ∼−→W ab

K is normalized so that uniformizing pa-
rameters go to lifts of the geometric Frobenius element. Let IK (resp. PK)
denote the inertia (resp. wild inertia) subgroup of GK . Then given a com-
patible system ζ = (ζn)`-n of primitive roots of unity, we have an isomor-
phism tζ : IK/PK

∼−→
∏
p 6=` Zp such that σ($1/n) = ζ

(tζ(σ) mod n)
n $1/n for

ANNALES DE L’INSTITUT FOURIER
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all σ ∈ IK/PK . By [41, Theorem 7.5.2], for all σ ∈ WK and τ ∈ IK , we
have tζ(στσ−1) = ε(σ)tζ(τ) where ε :=

∏
p 6=` εp : GK →

∏
p 6=` Z×p is the

product of the cyclotomic characters. For a prime p 6= `, let tζ,p : IK → Zp
denote the composition of the projection IK → IK/PK , the map tζ and the
projection from

∏
p 6=` Zp to Zp. Define vK : WK → Z by σ|Kur = FrvK(σ)

k

for all σ ∈ WK . Denote by rec the reciprocity map of local Langlands
correspondence for GLn(K), which is known due to works of Harris and
Taylor [30]. The map rec is chosen so that rec(π) = π ◦ Art−1

K for any ho-
momorphism π : K× → C× which is continuous with respect to discrete
topology on the target. The reciprocity map rec depends on the choice of
a square root of q in Qp, which we fix from now on.

Definition 2.1 ([19, 8.4.1]). — Let A be a commutative domain of
characteristic zero.

(1) A Weil–Deligne representation of WK on a free A-module M of
finite rank is a triple (r,M,N) consisting of a representation r :
WK → AutA(M) with open kernel and a nilpotent endomorphism
N ∈ EndA(M) such that

r(σ)Nr(σ)−1 = q−vK(σ)N for all σ ∈WK .

The operator N is called the monodromy of (r,M,N) and the map
trr : WK → A is called the trace of (r,M,N).

(2) A representation ρ ofWK on a free A-moduleM of finite rank is said
to be irreducible Frobenius-semisimple if M ⊗Q(A) is irreducible,
the φ-action on M ⊗Q(A) is semisimple and ker ρ is open.

The sum of Weil–Deligne representations are defined in the usual way
(cf. [7, §31.2]).

Definition 2.2. — Let A be a Zp-algebra of characteristic zero. Sup-
poseM is an A-module equipped with an A-linear action ρ ofWK or of GK .
We say M is monodromic with monodromy N over K ′ if there exists a fi-
nite extension K ′/K and a nilpotent element N of EndA[1/p](M⊗AA[1/p])
such that for all τ ∈ IK′

ρ(τ) = exp(tζ,p(τ)N)

in EndA[1/p](M ⊗A A[1/p]).

Given a Zp-algebra A of characteristic zero and a monodromic represen-
tation (ρ,M) of WK or of GK over A with monodromy N , (following [19,
8.4.2]) its Weil–Deligne parametrization is denoted by WD(M) and is de-
fined to be the triple (r,M [1/p], N) where r denotes the WK-action on the

TOME 67 (2017), FASCICULE 2
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A[1/p]-module M [1/p] given by

r(σ) = ρ(σ) exp(−tζ,p(φ−vK(σ)σ)N) for all σ ∈WK .

Suppose (r,N) = (r, V,N) is a Weil–Deligne representation with coef-
ficients in a field L of characteristic zero which contains the characteris-
tic roots of all elements of r(WK). Let r(φ) = r(φ)ssu = ur(φ)ss be the
Jordan decomposition of the operator r(φ) as the product of a diagonal-
izable operator r(φ)ss and a unipotent operator u acting on V . Follow-
ing [19, 8.5], define r̃(σ) = r(σ)u−vK(σ) for all σ ∈ WK . Then (r̃, V,N)
is a Weil–Deligne representation (by [19, 8.5] for example) and is called
the Frobenius-semisimplification of (r, V,N) (cf. [19, 8.6]). It is denoted by
V Fr-ss. We say (r, V,N) is Frobenius-semisimple if r̃ = r.

Definition 2.3. — For an integer t > 1, a characteristic zero commu-
tative domain A with ` ∈ A× and a representation (r,M) of WK on a free
module M of finite rank over A with ker(r) open in WK , the special rep-
resentation Spt(r)/A (also denoted Spt(r) when A is understood from the
context) is defined to be the Weil–Deligne representation with underlying
module M t on which WK acts via

r|Art−1
K |

t−1
K ⊕ r|Art−1

K |
t−2
K ⊕ · · · ⊕ r|Art−1

K |K ⊕ r

and the monodromy induces an isomorphism from r|Art−1
K |iK to r|Art−1

K |
i+1
K

for all 0 6 i 6 t− 2 and is zero on r|Art−1
K |

t−1
K .

Let Ω denote an algebraically closed field of characteristic zero.

Definition 2.4. — A Weil–Deligne representation over Ω is said to be
indecomposable if it is not isomorphic to a direct sum of two nonzero Weil–
Deligne representations over Ω.

Theorem 2.5. — Let (ρ, V,N) be a Frobenius-semisimple Weil–Deligne
representation over Ω. Then it is isomorphic to ⊕i∈ISpti(ri)/Ω for some
irreducible Frobenius-semisimple representations ri : WK → GLni(Ω) and
positive integers ti. This decomposition is unique up to reordering and
replacing factors by isomorphic factors.

Proof. — This follows from the proof of [18, Proposition 3.1.3(i)]. �

Definition 2.6. — Given (ρ, V,N) as above, its size is defined to be
the integer max{ti|i ∈ I}.

Definition 2.7. — An indecomposable summand of a Frobenius-semi-
simple Weil–Deligne representation V over Ω is a Weil–Deligne subrepre-
sentation of V isomorphic to a summand Spti(ri)/Ω via an isomorphism
V ' ⊕i∈ISpti(ri)/Ω with ti, ri as in Theorem 2.5.

ANNALES DE L’INSTITUT FOURIER
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Proposition 2.8. — Let (r,N) be a Weil–Deligne representation over
an integral domain A of characteristic zero. Let Qcl denote the algebraic
closure of Q in Q(A). Let B be a subring of A such that the character-
istic polynomial of r(g) has coefficients in B for all g ∈ WK . Then there
exist positive integers m, t1 6 · · · 6 tm, (Bintal)×-valued unramified char-
acters χ1, · · · , χm of WK and irreducible Frobenius-semisimple representa-
tions ρ1, · · · , ρm of WK with coefficients in Qcl with finite image such that
((r,N)⊗A Q(A))Fr-ss is isomorphic to ⊕mi=1Spti(χi ⊗ ρi).

Proof. — By Theorem 2.5, there exist positive integers m, t1 6 · · · 6 tm,
irreducible Frobenius-semisimple representations r1, · · · , rm of WK over
Q(A) such that ((r,N)⊗A Q(A))Fr-ss is isomorphic to ⊕mi=1Spti(ri). From
the proof of [7, 28.6 Proposition], it follows that for each 1 6 i 6 m,
there exists an unramified character χi : WK → Q(A)× such that the
WK-representation χ−1

i ⊗ ri has finite image. So there exists an irreducible
Frobenius-semisimple representation ρi : WK → GLdi(Qcl) with finite im-
age such that χ−1

i ⊗ri and ρi are isomorphic over Q(A) (by [53, Theorem 1]
for instance). So the product of χi(φ) and a root of unity belongs to Bintal.
Thus χi(φ) belongs to Bintal and similarly, χi(φ)−1 belongs to Bintal. Hence
χi has values in (Bintal)×. This proves the result. �

Lemma 2.9. — Let r : WK → GLn(A) be an irreducible Frobenius-
semisimple representation of WK with coefficients in a domain A of char-
acteristic zero. If B is a characteristic zero domain and f : A → B is a
ring homomorphism, then f ◦ r is also an irreducible Frobenius-semisimple
representation.

Proof. — Let Qcl denote the algebraic closure of Q in Q(A). By Propo-
sition 2.8, there exist an unramified character χ : WK → (Aintal)× and an
irreducible Frobenius-semisimple representation ρ : WK → GLn(Qcl) with
finite image such that r is isomorphic to χ⊗ρ over Q(A). So f intal(χ−1⊗r)
has trace equal to f intal(tr(χ−1 ⊗ r)) = f intal(trρ) = trf intal(ρ) and hence
f intal(χ−1 ⊗ r) is isomorphic to f intal(ρ). Thus f(r) is isomorphic to
f intal(χ)⊗ f intal(ρ). This proves the lemma. �

Recall that a q-Weil number of weight w ∈ Z is an algebraic number
α ∈ Q such that qnα is an algebraic integer for some n ∈ Z and |σ(α)| =
qw/2 for any embedding σ : Q ↪→ C. Given a Weil–Deligne representation
(r, V,N) on a vector space V , its associated monodromy filtration is an
increasing filtration M• on V where Mk =

∑
i+j=k kerN i+1 ∩ N−jV for

k ∈ Z (see [20, 1.7.2]).

TOME 67 (2017), FASCICULE 2
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Definition 2.10. — A Weil–Deligne representation V of WK over Qp
is said to be pure of weight w ∈ Z if the eigenvalues of one (and hence any)
lift of the geometric Frobenius element on GriM• are q-Weil numbers of
weight w + i where M• denotes the monodromy filtration on V Fr-ss.
A finite dimensional representation V of GK or of WK over Qp is said

to be pure of weight w ∈ Z if it is monodromic and its Weil–Deligne
parametrization with respect to one (and hence any) choice of φ and ζ is
pure of weight w.

Let Ω be an algebraically closed field of characteristic zero. For a
Weil–Deligne representation (r, V,N) of WK over Ω, its Euler factor
Eul((r,N), X) is defined as the element det(1 − Xφ|V IK,N=0)−1 of Ω(X)
where V IK ,N=0 denotes the subspace of V on which IK acts trivially and N
is zero. For a representation ρ : GE → GL(V ) of the absolute Galois group
of a number field E on a finite dimensional vector space V over Ω, its local
Euler factor Eulv(ρ,X) at a finite place v of E not dividing p is defined to
be the element Eul(WD(V |Gv ), X) in Ω(X) if V |Gv is monodromic. Now
we define the notion of automorphic types.

Definition 2.11. — Let (ρ,N) be a Frobenius-semisimple Weil–Deligne
representation of WK over Qp. Let m, t1, · · · , tm be positive integers and
r1, · · · , rm be irreducible Frobenius-semisimple representations of WK over
Qp such that (ρ,N) is isomorphic to ⊕mi=1Spti(ri). We define the automor-
phic representation type ATrep(rec−1(ιp(ρ,N))) of rec−1(ιp(ρ,N)) to be
the unordered tuple

ATrep(rec−1(ιp(ρ,N))) = ((rec−1(ιp(r1)), t1), · · · , (rec−1(ιp(rm)), tm))

and the automorphic type AT(rec−1(ιp(ρ,N))) of rec−1(ιp(ρ,N)) to be the
unordered tuple

AT(rec−1(ιp(ρ,N))) = ((dim r1, t1), · · · , (dim rm, tm)).

3. Purity for big Galois representations

Recall from §1.2 that (ρ,N) is a Weil–Deligne representation of WK on
On, where O is an integral domain over Q with fraction field L . The Weil–
Deligne representation (ρ,N) ⊗O L is denoted by V. For a map λ : O →
Qp, denote by πλ the automorphic representation rec−1(ιp(V Fr-ss

λ )) where
ιp : Qp ' C denotes the isomorphism fixed in §1.2.

ANNALES DE L’INSTITUT FOURIER



PURITY FOR FAMILIES 889

Theorem 3.1 (Purity for big Galois representations). — Let m, t1 6
· · · 6 tm be positive integers, r1, · · · , rm be irreducible Frobenius-semi-
simple representations of WK over O intal such that

(3.1) VFr-ss '
m⊕
i=1

Spti(ri)/L .

Suppose λ : O → Qp is a map such that Vλ is pure. Then the following
hold.

(1) The Weil–Deligne representations V Fr-ss
λ and ⊕mi=1Spti(λ

intal◦ri)/Qp
are isomorphic.

(2) The rank of no power of the monodromy N decreases after special-
izing at λ.

(3) The polynomial Eul(V, X)−1 has coefficients in O int and its spe-
cialization under λintal is Eul(Vλ, X)−1.

(4) The automorphic representation type ATrep(πλ) of πλ is equal to
the unordered tuple(
(rec−1(ιp(λintal ◦ r1)), t1), · · · , (rec−1(ιp(λintal ◦ rm)), tm)

)
.

(5) The automorphic type AT(πλ) of πλ is equal to the unordered tuple
((dim ρ1, t1), · · · , (dim ρm, tm)).

Moreover, for any field K and any map µ : O → K with λ(kerµ) = 0, the
Weil–Deligne representation (Vµ⊗KK)Fr-ss is isomorphic to⊕mi=1Spti(µ

intal◦
ri)/K. Furthermore, there exist m, ti, ri with the above-mentioned proper-
ties such that equation (3.1) holds.

Note that the above theorem can also be stated in terms of monodromic
representations of the Weil group WK or the Galois group GK and thus it
can be considered as a statement about big Galois representations.
Proof. — Suppose Vλ is pure of weight w. For 1 6 j 6 m, denote the

multiset
j⋃
i=1
{[λintal ◦ ri], [λintal ◦ (|Art−1

K |Kri)], · · · , [λ
intal ◦ (|Art−1

K |
ti−1
K ri)]}

by Sj (where [r] denotes the isomorphism class of a representation r). Note
that conditions (A), (B), (C) below hold.

(A) V Fr-ss
λ is pure of weight w,

(B) λintal ◦ trVFr-ss = trV Fr-ss
λ ,

(C) V Fr-ss
λ is annihilated by the tm-th power of its monodromy.
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By [20, 1.6.7], the monodromy filtration associated to a direct sum of
Weil–Deligne representations is equal to the direct sum of the monodromy
filtrations associated to its summands. So the indecomposable summands
of V Fr-ss

λ are pure of weight w (by condition (A)). Moreover, they are of
size (see Definition 2.6) at most tm by condition (C). Since the elements
of Sm are (isomorphism classes of) irreducible Frobenius-semisimple WK-
representations (by Lemma 2.9) and the sum of their traces is equal to
trV Fr-ss

λ (by condition (B)), the difference of the weights of any two ele-
ments of the multiset Sm is at most 2(tm−1). Note that the difference of the
weights of λintal(rm), λintal(|Art−1

K |
tm−1
K rm) is 2(tm−1). So these are a high-

est weight and a lowest weight element of Sm respectively. By condition (A),
w is equal to the average of the weights of a highest weight and a lowest
weight element of Sm, i.e., the average of the weights of λintal(rm) and
λintal(|Art−1

K |
tm−1
K rm). So λintal(rm) has weight w+ tm−1. Since λintal(rm)

is a highest weight element of Sm and V Fr-ss
λ is pure of weight w (by con-

dition (A)), the Weil–Deligne representation Sptm(λintal(rm)) is a direct
summand of V Fr-ss

λ .
Now assume that for an integer 1 6 m′ < m, the representation

Sptm′+1
(λintal ◦ rm′+1) ⊕ · · · ⊕ Sptm(λintal ◦ rm) is a direct summand of

V Fr-ss
λ , i.e., there is an isomorphism

(3.2) V Fr-ss
λ 'W ⊕

m⊕
i=m′+1

Spti(λ
intal ◦ ri).

LetW denote the Weil–Deligne representation ⊕m′

i=1Spti(ri). Then the sum∑m
i=m′+1(ti−tm′) dim ri is equal to the integer dimL N tm′ (VFr-ss) (by equa-

tion (3.1)), which is greater than or equal to dimQp
λ(N)tm′ (V Fr-ss

λ ) and this
is equal to dimQp

λ(N)tm′W+
∑m
i=m′+1(ti−tm′) dim ri (by equation (3.2)).

So λ(N)tm′ (W ) = 0. Thus conditions (A’), (B’), (C’) below hold.

(A’) W is pure of weight w,
(B’) λintal ◦ trW = trW ,
(C’) W is annihilated by the tm′ -th power of its monodromy.

In other words, the conditions (A), (B), (C) also hold when V Fr-ss
λ ,VFr-ss,m

are replaced by W,W,m′ respectively. So the argument in the paragraph
next to conditions (A), (B), (C) also hold when V Fr-ss

λ ,VFr-ss,m are re-
placed by W,W,m′ respectively (and conditions (A’), (B’), (C’) are used
instead of (A), (B), (C)). So it follows that the Weil–Deligne representation
Sptm′ (λintal ◦ rm′) is a direct summand of W . Then equation (3.2) shows
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that Sptm′ (λintal ◦ rm′)⊕ Sptm′+1
(λintal ◦ rm′+1)⊕ · · · ⊕ Sptm(λintal ◦ rm) is

a direct summand of V Fr-ss
λ . This proves part (1) by induction.

Note that part (2) follows from part (1) and equation (3.1). Since the
characteristic polynomial of ρ(g) has coefficients in O for all g ∈ WK ,
the roots of the characteristic polynomial of ρ(g) are elements of O intal.
So the coefficients of Eul(V, X)−1 = det(1 − Xφ|VIK,N=0) are elements
of O intal. However this polynomial has coefficients in the fraction field L

of O. Hence Eul(V, X)−1 has coefficients in O int. To complete the proof
of part (3), note that VIK ,N=0 is isomorphic to ⊕mi=1(ri|Art−1

K |
ti−1
K )IK

over L , and by part (1), the representation V IK ,N=0
λ is isomorphic to

⊕mi=1(λintal(ri|Art−1
K |

ti−1
K ))IK over Qp. Denote by ρi the representation

ri|Art−1
K |

ti−1
K of WK over O intal. Since ρi(IK) is finite, the map λintal in-

duces an isomorphism

ρIKi ⊗Ointal,λintal Qp ' (λintal ◦ ρi)IK

of WK-representations. So under the map λintal, the polynomial det(1 −
Xφ|

ρ
IK
i

) specializes to det(1 − Xφ|(λintal◦ρi)IK ), i.e., the specialization of
Eul(V, X)−1 under λintal is equal to Eul(Vλ, X)−1. This proves part (3).
Note that part (1) implies parts (4) and (5).
To prove the statement about Vµ⊗K, we assume that K is algebraically

closed (to simplify notations). Let Oµ (resp. Oλ) denote the image of µ
(resp. λ) and η : Oµ → Oλ denote the map such that λ = η ◦ µ. Let
λ† denote the map ηintal ◦ µintal. By Proposition 2.8, there exist positive
integersM, t′1 6 · · · 6 t′M and irreducible Frobenius-semisimple representa-
tions s1, · · · , sM over Ointal

µ such that V Fr-ss
µ is isomorphic to ⊕Mi=1Spt′

i
(si).

By part (1), V Fr-ss
λ is isomorphic to ⊕Mi=1Spt′

i
(ηintal ◦si). HenceM = m and

t′i = ti for all 1 6 i 6M . So ηintal ◦ si, λ† ◦ ri are of weight w+ ti− 1 for all
1 6 i 6 m. Note that for some integers 1 6 j 6 m, 0 6 a 6 tj−1, the repre-
sentations µintal◦rm and sj |Art−1

K |aK are isomorphic. So the representations
λ† ◦ rm, ηintal ◦ (sj |Art−1

K |aK) are of equal weight. This shows tm = tj − 2a,
hence a = 0, tj = tm. Thus Sptm(µintal ◦ rm) is a direct summand of V Fr-ss

µ .
Suppose for an integer 1 6 m′ < m, the representation ⊕mi=m′+1Spti(µ

intal◦
ri) is a direct summand of V Fr-ss

µ . By Proposition 2.8, there exist irre-
ducible Frobenius-semisimple representations s′1, · · · , s′m′ over Ointal

µ such
that V Fr-ss

µ is isomorphic to
⊕m′

i=1 Spti(s
′
i) ⊕

⊕m
i=m′+1 Spti(µ

intal ◦ ri). By
part (1), V Fr-ss

λ is isomorphic to
⊕m′

i=1 Spti(η
intal◦s′i)⊕

⊕m
i=m′+1 Spti(η

intal◦
µintal ◦ ri). So ηintal ◦ s′i, λ† ◦ ri are of weight w + ti − 1 for all 1 6 i 6 m′.
Note that for some integers 1 6 k 6 m′ and 0 6 b 6 tk − 1, the
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representations µintal ◦ rm′ and s′k|Art−1
K |bK are isomorphic. So the rep-

resentations λ† ◦ rm′ , ηintal ◦ (s′k|Art−1
K |bK) are of equal weight. This shows

tm′ = tk − 2b, hence b = 0, tk = tm′ . Thus Sptm′ (µintal ◦ rm′) is a direct
summand of ⊕m′

i=1Spti(s
′
i) and hence ⊕mi=m′Spti(µ

intal ◦ ri) is a direct sum-
mand of V Fr-ss

µ . By induction, it follows that (Vµ ⊗K K)Fr-ss is isomorphic
to ⊕mi=1Spti(µ

intal ◦ri)/K. Finally, the existence of m, ti, ri is guaranteed by
Proposition 2.8. �

Note that when the cofficient ring O (as in §1.2) of the representation
(ρ,N) is replaced by a more general ring (for instance, a ring which is
not an integral domain), no analogue of Theorem 3.1 seems to exist. In
fact a crucial step in its proof is to express the trace of V as a sum of
traces of irreducible Frobenius-semisimple representations over O intal and
then to pin down the factors of powers of the character |Art−1

K |K in them.
The amount of these factors is governed by the size of the Jordan blocks
of the monodromy of V. When the coefficient ring O of (ρ,N) is not a
domain, then the shapes of the Jordan blocks of the images of N in the
residue fields of Oa for minimal primes a of O need not be independent
of a. Thereby, in no reasonable manner, it is possible to pin down the
factors of powers of |Art−1

K |K present in the representations stated above.
Even in the very simple case where O = Zp[[X]] × Zp[[X]] × Zp[[X]], V
is semistable and N ∈ M3(O) is the strictly upper triangular matrix with
N12 = (X, 0, 0), N13 = 0, N23 = (0, X, 0), we cannot track the ‘right’ factors
of powers of q in the characteristic roots of φ on V. Thus it seems hard to
have a reasonable analogue of equation (3.1) that could lead to an analogue
of Theorem 3.1 when O is a more general ring than a domain (for example,
a non-integral domain). So we are compelled to assume that O is a domain.

4. Purity for pseudorepresentations

In this section, we prove Theorem 4.3 which is an analogue of Theo-
rem 3.1 in the context of pseudorepresentations of Weil groups. We refer
to Wiles [55] and Taylor [53] for the notion of pseudorepresentations. They
are defined by abstracting the crucial properties of the trace of a group
representation.

4.1. Preliminaries

Let O1,O2 be integral domains with fraction fields L1,L2 respectively.
Let res1 : O ↪→ O1, res2 : O ↪→ O2 be injective maps. Let T0 : WK →
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O intal be a pseudorepresentation of dimension d > 1 and (r1, N1) : WK →
GLd(Ointal

1 ), (r2, N2) : WK → GLd(Ointal
2 ) be Weil–Deligne representations

such that
res†1 ◦ T0 = tr(r1), res‡2 ◦ T0 = tr(r2)

for some lifts res†1 : O intal → Ointal
1 , res‡2 : O intal → Ointal

2 of res1, res2
respectively. Suppose that there exist maps f1 : Ointal

1 → Qp, f2 : Ointal
2 →

Qp such that f1◦(r1, N1), f2◦(r2, N2) are pure. We first state a proposition,
which plays a crucial role in the proof of Theorem 4.3. Next, we prove a
lemma which will be used to establish this proposition.

Proposition 4.1. — The size of (f1 ◦ (r1, N1))Fr-ss is less than or equal
to the size of (f2 ◦ (r2, N2))Fr-ss. Consequently, these two representations
have the same size. Suppose there is an isomorphism

(4.1) ((r1, N1)⊗O1 L1)Fr-ss '
κ⊕
i=1

Spti(res†1 ◦ θi)

where κ, t1 6 · · · 6 tκ are positive integers and θ1, · · · , θκ are irreducible
Frobenius-semisimple representations of WK over O intal. Then the repre-
sentation Sptκ(res‡2 ◦ θκ) is a direct summand of ((r2, N2)⊗O2 L2)Fr-ss.

Lemma 4.2. — Let k, s1 6 · · · 6 sk be positive integers and ϑ1, · · · , ϑk
be irreducible Frobenius-semisimple representations ofWK over Ointal

2 such
that

(4.2) ((r2, N2)⊗O2 L2)Fr-ss '
k⊕
i=1

Spsi(ϑi).

Then for some integers 1 6 a, b 6 k, we have

(4.3)
(res‡2 ◦ (θκ|Art−1

K |
tκ−1
K ))/L2

' (ϑa|Art−1
K |

sa−1
K )/L2

,

(res‡2 ◦ θκ)/L2
' (ϑb)/L2

,

(4.4) 2tκ = sa + sb 6 2sk.

Proof. — By Lemma 2.9, res†1 ◦θi is an irreducible Frobenius-semisimple
representation of WK over Ointal

1 . Since f1 ◦ (r1, N1) is pure, Theorem 3.1
and equation (4.1) give

(4.5) (f1 ◦ (r1, N1))Fr-ss '
κ⊕
i=1

Spti(f1 ◦ res†1 ◦ θi).

Since t1 6 · · · 6 tκ and f1◦(r1, N1) is pure, by equation (4.5), no eigenvalue
of φ on f1 ◦ (r1, N1) has weight strictly more (resp. less) than the weight
of the φ-eigenvalues on f1 ◦ res†1 ◦ θκ (resp. f1 ◦ res†1 ◦ (θκ|Art−1

K |
tκ−1
K )). So
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there are no integers i, j with 1 6 i 6 κ, 1 6 j 6 ti such that θi|Art−1
K |

j−1
K

is isomorphic to θκ|Art−1
K |
−ν
K or θκ|Art−1

K |
tκ−1+ν
K for some integer ν > 1.

Note that by Lemma 2.9, there exist integers 1 6 a, b 6 k such that the
WK-representation res‡2 ◦ (θκ|Art−1

K |
tκ−1
K ) (resp. res‡2 ◦ θκ) is isomorphic to

ϑa|Art−1
K |

j1
K (resp. ϑb|Art−1

K |
j2
K) over L2 where 0 6 j1 6 sa − 1 (resp. 0 6

j2 6 sb − 1). Now for some 1 6 i 6 κ, 1 6 j 6 ti, the WK-representations
res‡2 ◦ θi|Art−1

K |
j−1
K , ϑa|Art−1

K |
sa−1
K ' res‡2 ◦ (θκ|Art−1

K |
tκ−1−j1+sa−1
K ) are iso-

morphic over L2. As res2 is injective and the traces of the representations
θi|Art−1

K |
j−1
K and θκ|Art−1

K |
tκ−1−j1+sa−1
K coincide after composing them

with res‡2, these representations are isomorphic over L (by [48, Chapter 1,
§2] for instance). As noted before, sa − 1 − j1 cannot be positive. So j1
is equal to sa − 1. Similarly j2 is zero. Thus equation (4.3) holds. Using
Theorem 3.1 and equation (4.2), we get

(4.6) (f2 ◦ (r2, N2))Fr-ss '
k⊕
i=1

Spsi(f2 ◦ ϑi).

Let w denote the weight of f2 ◦ (r2, N2). So the weight of any φ-eigenvalue
on f2◦ϑb (resp. f2◦ϑa|Art−1

K |
sa−1
K ) is equal to w+(sb−1) (resp. w−(sa−1)).

Thus their difference is equal to sa+sb−2, and this difference is also equal
to 2(tκ − 1) by equation (4.3). Since sa, sb are less than or equal to sk, we
get equation (4.4). �

Proof of Proposition 4.1. — Equations (4.4), (4.5), (4.6) together imply
that the size of (f1 ◦ (r1, N1))Fr-ss is less than or equal to the size of (f2 ◦
(r2, N2))Fr-ss. Similarly, the size of (f2 ◦(r2, N2))Fr-ss is less than or equal to
the size of (f1 ◦ (r1, N1))Fr-ss. So, these two representations have the same
size. Thus tκ is equal to sk. Then equation (4.4) gives sa = sb = sk. So sb
is equal to tκ and ϑb is isomorphic to res‡2 ◦ θκ over L2 (by equation (4.3)).
Thus Sptκ(res‡2 ◦ θκ) is isomorphic to Spsb(ϑb) and hence it is a direct
summand of ((r2, N2)⊗O2 L2)Fr-ss by equation (4.2). �

4.2. Pseudorepresentations of Weil groups

Theorem 4.3 (Purity for pseudorepresentations). — Let T : WK → O

be a pseudorepresentation of dimension n > 1. LetO be an integral domain,
res : O ↪→ O be an injective map and (r,N) : WK → GLn(O) be a Weil–
Deligne representation such that res ◦ T = trr and f ◦ (r,N) is pure for
some map f : O → Qp. Suppose

(4.7)
(
(r,N)⊗O Q(O)

)Fr-ss '
m⊕
i=1

Spti(resintal ◦ ri)
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where m, t1 6 t2 6 · · · 6 tm are positive integers and r1, · · · , rm are
irreducible Frobenius-semisimple representations ofWK with coefficients in
O intal. Then for any Weil–Deligne representation (r′, N ′) : WK → GLn(O′)
over a domain O′ satisfying

• res′ ◦ T = trr′ for some injective map res′ : O ↪→ O′,
• f ′ ◦ (r′, N ′) is pure for some map f ′ : O′ → Qp,

there are isomorphisms

((r′, N ′)⊗O′ Q(O′))Fr-ss '
m⊕
i=1

Spti(res′† ◦ ri),(4.8)

(f ′ ◦ (r′, N ′))Fr-ss '
m⊕
i=1

Spti(f
′† ◦ res′† ◦ ri)(4.9)

for any lift res′† : O intal → O′intal of res′ and any lift f ′† : O′intal → Qp
of f ′. Moreover, there exist m, ti, ri with the above-mentioned properties
such that equation (4.7) holds.

Proof. — Let L′ denote the fraction field of O′. By Proposition 4.1,
Sptm(res′† ◦ rm) is a direct summand of ((r′, N ′) ⊗O′ L′)Fr-ss. Suppose for
some 1 6 k < m, the representation ⊕mi=k+1Spti(res′† ◦ ri) is a direct sum-
mand of ((r′, N ′)⊗O′ L′)Fr-ss. By Proposition 2.8, there exist positive inte-
gers Q, s1 6 · · · 6 sQ and irreducible Frobenius-semisimple representations
η1, · · · , ηQ of WK with coefficients in O′intal such that ((r′, N ′)⊗O′ L′)Fr-ss

is isomorphic to
⊕Q

i=1 Spsi(ηi)⊕
⊕m

i=k+1 Spti(res′† ◦ri). Note that the spe-
cialization of the pseudorepresentation

∑k
i=1
∑ti
j=1 trri|Art−1

K |
j−1
K : WK →

O intal under resintal (resp. res′†) is equal to the trace of the Weil–Deligne
representation ⊕ki=1Spti(resintal ◦ ri) (resp. ⊕Qi=1Spsi(ηi)) of WK with co-
efficients in Ointal (resp. O′intal). So by Proposition 4.1, the representa-
tion Sptk(res′† ◦ rk) is a direct summand of ⊕Qi=1Spsi(ηi). This shows
⊕mi=kSpti(res′† ◦ ri) is a direct summand of ((r′, N ′)⊗O′ L′)Fr-ss. So we ob-
tain equation (4.8) by induction. Then Theorem 3.1 gives equation (4.9).
Now let L denote the fraction field of O. By Proposition 2.8, there ex-
ist positive integers m, t1 6 t2 6 · · · 6 tm and irreducible Frobenius-
semisimple representations τ1, · · · , τm ofWK with coefficients in Ointal such
that ((r,N) ⊗O L)Fr-ss is isomorphic to ⊕mi=1Spti(τi). Since trr = res ◦ T ,
the characteristic polynomial of τi has coefficients in (resO)intal (we con-
sider Q(resO) as a subfield of L and thus (resO)intal is a subring of Ointal).
So by Proposition 2.8, we may (and do) assume that τi has coefficients in
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(resO)intal. The map res being injective, induces an isomorphism between
O and its image resO. Thus resintal is an isomorphism between O intal and
(resO)intal. Since τi has coefficients in (resO)intal, there exist irreducible
Frobenius-semisimple representations r1, · · · , rm of WK with coefficients
in O intal such that resintal ◦ r1 = τ1, · · · , resintal ◦ rm = τm, and hence
equation (4.7) holds. �

4.3. Pure specializations of pseudorepresentations of global
Galois groups

Let F be a number field and T : GF → O be a pseudorepresentation
such that T = T1 + · · · + Tn where T1 : GF → O, · · · , Tn : GF → O are
pseudorepresentations. Fix a finite place w of F not dividing p and assume
that O is a Zp-algebra.

Definition 4.4. — The irreducibility and purity locus of T1, · · · , Tn
is defined to be the collection of all tuples of the form (O,m, κ, loc, ρ1,
· · · , ρn) where O is a Zp-algebra and it is a Henselian Hausdorff domain
with maximal ideal m, κ denotes the residue field of O and is an algebraic
extension of Qp, loc : O ↪→ O is an injective Zp-algebra homomorphism
and for each 1 6 i 6 n, ρi is an irreducible GF -representation over κ such
that the trace of ρi is equal to loc ◦ Ti mod m and ρi|Gw is pure.

For each element (O,m, κ, loc, ρ1, · · · , ρn) of this locus, by [42, Théo-
rème 1], there exist semisimple GF -representations ρ̃1, · · · , ρ̃n over O such
that trρ̃i = loc ◦ Ti for all 1 6 i 6 n. Using [53, Theorem 1], choose
semisimple representations σ1, · · · , σn of GF over L such that trσi = Ti
for all 1 6 i 6 n.

Theorem 4.5. — Suppose the irreducibility and purity locus of T1, · · · ,
Tn is nonempty and the restrictions of σ1, · · · , σn to Ww are monodromic
(see Definition 2.2). Then there exist positive integers m, t1, t2, · · · , tm and
irreducible Frobenius-semisimple representations r1, · · · , rm of Ww with
coefficients in O intal such that

(4.10) WD
(

n⊕
i=1

σi|Ww

)Fr-ss

'
m⊕
i=1

Spti(ri)/L
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and for any element (O,m, κ, loc, ρ1, · · · , ρn) in the irreducibility and purity
locus of T1, · · · , Tn, there are isomorphisms

WD
(

n⊕
i=1

ρi|Ww

)Fr-ss

'
m⊕
i=1

Spti(π
intal
m ◦ locintal ◦ ri)κ,(4.11)

WD
(

n⊕
i=1

ρ̃i|Ww ⊗Q(O)
)Fr-ss

'
m⊕
i=1

Spti(locintal ◦ ri)/Q(O).(4.12)

Proof. — Since ρ̃i has coefficients in O, trρ̃i mod m is equal to trρi and
ρi is irreducible, the representation ρ̃i is irreducible. Note that the GF -
representations σi ⊗ Q(O), ρ̃i have same traces. So they are isomorphic.
Since σi|Ww is monodromic, ρ̃i|Ww is also monodromic. So its Weil–Deligne
parametrization WD(ρ̃i|Ww) is defined, it has coefficients in O, its trace is
equal to loc◦Ti|Ww

and its mod m reduction is isomorphic to the pure repre-
sentation WD(ρi|Ww

). Then Theorem 4.3 gives equations (4.11) and (4.12).
Since ρ̃i is isomorphic to σi ⊗ Q(O), we get equation (4.10) from equa-
tion (4.12). �

5. Local Langlands correspondence for GLn in families

Let (ρ,N) be a Frobenius-semisimple Weil–Deligne representation ofWK

over a finite extension L of Qp. Let π(ρ,N) denote the indecomposable ad-
missible representation of GLn(K) over L attached to (ρ,N) via the Breuil–
Schneider modified local Langlands correspondence (see [6, pp. 161–164]).
To define the representation π(ρ,N), one needs to choose a square root
of q. However the representation π(ρ,N) is independent of this choice.
In [23], this modified correspondence is extended to Frobenius-semisimple
Weil–Deligne representations over arbitrary field extensions of Qp. For a
Frobenius-semisimple Weil–Deligne representation (ρ,N) of WK over an
extension L of Qp, let π(ρ,N) denote the indecomposable admissible rep-
resentation of GLn(K) over L attached to (ρ,N) (see §4.2 of loc. cit.).
The smooth contragredient of π(ρ,N) is denoted by π̃(ρ,N). If r is a mon-
odromic representation of WK on a finite dimensional vector space over a
field extension L of Qp and L contains the characteristic roots of all ele-
ments of r(WK), then we denote by π̃(r) the representation π̃(WD(r)Fr-ss).
Let (A,m) be a complete reduced p-torsion free Noetherian local ring with
finite residue field of characteristic p. For example, Zp[[X]][Y ]/(Y 2 +XY ) is
such a ring and it has two minimal primes, which are generated by Y and
Y +X. The typical examples of A are p-adically completed Hecke algebras
(see [22, Definition 5.2.5]). For a prime ideal p of A, the mod p reduction
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of a representation ρ on a free A-module is denoted by ρp. We refer to [23]
for unfamiliar notations and terminologies used below.

Theorem 5.1. — Let E be a number field and S denote a finite set
of non-archimedean places of E, none of which divides p. For each v ∈
S, let rv : Gv → GLn(A) be a continuous representation. Write G =∏
v∈S GLn(Ev). Then there exists at most one (up to isomorphism) ad-

missible smooth representation V of G over A satisfying the conditions
below.

(1) The module V is A-torsion free, i.e., all associated primes of V are
minimal prime ideals of A.

(2) For every minimal prime a of A, there exists a G-equivariant iso-
morphism

(5.1)
⊗
v∈S

π̃(rv,a) ∼−→ κ(a)⊗A V.

(3) The G-cosocle cosoc(V/mV ) of V/mV is absolutely irreducible
and generic, the kernel of the natural surjection V/mV →
cosoc(V/mV ) contains no generic subrepresentations.

Proof. — It is a part of [23, Theorem 6.2.1]. �

When V exists, we denote it by π̃({rv}v∈S). If S contains only one
place, we denote V by π̃(rv). By [23, Proposition 6.2.4], the A[G]-module
π̃({rv}v∈S) exists if and only if the A[GLn(Ev)]-module π̃(rv) exists for any
v ∈ S. For a minimal prime a of A[1/p], the monodromy of rv,a is denoted
by Nv(a) (which exists by [23, Proposition 4.1.6]).

Theorem 5.2. — Let S be as in Theorem 5.1 and p be a prime ideal
of A[1/p]. Suppose that the A[G]-module π̃({rv}v∈S) exists. If p lies on
exactly one irreducible component of SpecA[ 1

p ], then there exists a κ(p)-
linear G-equivariant surjection

γp :
⊗
v∈S

π̃(rv,p)→ κ(p)⊗A π̃({rv}v∈S),

which is an isomorphism if for some minimal prime a of A contained in
p, the rank of Nv(a)j is equal to the rank of (Nv(a) ⊗A/a κ(p))j for all
j > 1 and for any v ∈ S. Suppose a1, · · · , as are the minimal primes of
A contained in p. Let Vi denote the maximal A-torsion free quotient of
π̃({rv}v∈S)⊗A A/ai. Let Wp denote the image of the diagonal map

κ(p)⊗A π̃({rv}v∈S)→
s∏
i=1

κ(p)⊗A/ai Vi.
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Then there exists a κ(p)-linear G-equivariant surjection

ςp :
⊗
v∈S

π̃(rv,p)→Wp,

which is an isomorphism if for some 1 6 i 6 s, the rank of Nv(ai)j is equal
to the rank of (Nv(ai)⊗A/ai κ(p))j for all j > 1 and for any v ∈ S.

Proof. — The statement about the map γp (resp. ςp) is the content of [23,
Theorem 6.2.5] (resp. [23, Theorem 6.2.6]). �

The results stated above are proved by Emerton and Helm in [23], which
provides a formulation of the local Langlands correspondence (LLC, for
short) for families. Recall that LLC, proved by Harris and Taylor [30], as-
serts that there is a canonical bijection between the isomorphism classes of
irreducible admissible representations of GLn(K) over C and the isomor-
phism classes of n-dimensional Frobenius-semisimple complex Weil–Deligne
representations of WK . So roughly speaking, given a continuous represen-
tation r : GK → GLn(A), an extension of LLC to families is expected to
provide a unique (up to isomorphism) admissible smooth representation
V of GLn(K) over A whose specializations at the primes of A would be
related to the representations of GLn(K) attached via LLC to the special-
izations of r at the primes of A. Indeed, Theorem 5.1 says that given a
continuous representation rv : Gv → GLn(A) of a decomposition group
of a number field E (we assume for simplicity that S contains a single
place v of E not dividing p), there exists at most one (up to isomorphism)
admissible smooth representation V of GLn(Ev) over A such that condi-
tions (1) and (3) of Theorem 5.1 hold and for each minimal prime ideal a
of A, there is a Gv-equivariant isomorphism (as in equation (5.1)) between
κ(a)⊗AV and the representation π̃(rv,a) associated to the reduction rv,a of
rv modulo a via the Breuil–Schneider modified LLC. Let us assume that V
exists and denote it by π̃(rv). Moreover, by Theorem 5.2, for any prime p

of A[ 1
p ] contained in exactly one irreducible component of SpecA[ 1

p ], there
exists a κ(p)-linear Gv-equivariant surjection γp : π̃(rv,p)→ κ(p)⊗A π̃(rv),
which is an isomorphism when the rank of no power of the monodromy
of rv,a decreases under reduction modulo p for some minimal prime a of
A[ 1

p ] contained in p. This describes the sense in which π̃(rv) interpolates the
Breuil–Schneider modified LLC over SpecA[ 1

p ]. Furthermore, even when p is
contained in multiple irreducible components of SpecA[ 1

p ], then the state-
ment in Theorem 5.2 about the map γp is conjectured to hold (see [23,
Conjecture 6.2.7]) and is known to be true if n = 2 or n = 3 (by [23,
Proposition 6.2.8]). For a prime p of A[ 1

p ] contained in multiple irreducible
components of SpecA[ 1

p ], the existence of a map ςp from π̃(rv,p) to Wp is
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established (i.e., instead of having a map from π̃(rv,p) to κ(p) ⊗A π̃(rv),
we have a map from π̃(rv,p) to Wp, which is the image of κ(p)⊗A π̃(rv) in
a space mentioned in Theorem 5.2). Moreover, the map ςp is a surjection
and is an isomorphism when the rank of no power of the monodromy of
rv,a decreases under reduction modulo p for some minimal prime a of A[ 1

p ]
contained in p. On the other hand, Theorem 3.1 gives information about
non-degeneracy of monodromy under pure specializations. Thus combining
the above result with Theorem 3.1, we obtain the result below.

Theorem 5.3. — Let S,G, rv be as in Theorem 5.1 and suppose that
the A[G]-module π̃({rv}v∈S) exists. Let p be a prime of A[1/p]. Suppose
there exists a Zp-algebra homomorphism ip : A → Qp such that p is con-
tained inside the kernel of ip and rv⊗A,ip Qp is pure for all v ∈ S. Then the
surjection ςp is an isomorphism. Moreover, if p lies on only one irreducible
component of SpecA[1/p], then the surjection γp is also an isomorphism.

Proof. — Let a denote a minimal prime of A contained in p. By Theo-
rem 3.1, the rank of the j-th power of monodromy of rv,a is equal to the
rank of the j-th power of the monodromy of rv,p for any j > 1 and any
v ∈ S. So the result follows from Theorem 5.2. �

6. Families of Galois representations

This section illustrates the role of purity for families (Theorems 3.1, 4.3,
4.5) in the study of variation of local Euler factors, local automorphic types,
intersection points of irreducible components etc. for families of Galois
representations.

6.1. Hida families

For Hida theory of ordinary cusp forms, we follow [33] and refer to the
references [31, 32] contained therein. We follow [28] for Hida theory for
definite unitary groups.

6.1.1. Cusp forms

Let f =
∑∞
n=1 anq

n be a normalized eigen cusp form of weight k > 2.
Then by the works of Eichler [21], Shimura [50], [51, 68c], Deligne [17], Ri-
bet [46, Theorem 2.3], there exists a unique (up to equivalence) continuous
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Galois representation ρf : GQ → GL2(Qp) such that trρf (Fr`) = a` for any
prime ` not dividing p and the level of f . Let π(f) = ⊗′`6∞π(f)` denote the
irreducible unitary representation of GL2(AQ) corresponding to f (see [27,
Theorems 5.19, 4.30]).
Let N be a positive integer and p be an odd prime with p - N and

Np > 4. Let hord be the universal p-ordinary Hecke algebra of tame level
N (denoted hord(N ;Zp) in [33]). It is a Zp[[X]]-algebra. Let a be a mini-
mal prime of hord. Let R(a) denote the ring hord/a and Q(a) denote the
fraction field of R(a). Let Q(a) be an algebraic closure of Q(a). Let S
denote the set of places of Q dividing Np∞. By [33, Theorem 3.1], there
exists a unique (up to equivalence) continuous (in the sense of [33, §3])
absolutely irreducible Galois representation ρa : GQ,S → GL2(Q(a)) such
that ρa has traces in R(a) and tr(ρa(Fr`)) = T` mod a for all prime ` - Np
where T` ∈ hord denotes the Hecke operator associated to `. A Zp-algebra
homomorphism λ : hord → Qp is said to be an arithmetic specialization if
λ((1 + X)pr − (1 + p)(k−2)pr ) = 0 for some integers k > 2 and r > 0. The
arithmetic specializations of hord are in one-to-one correspondence (by the
isomorphism of [33, Theorem 2.2]) with the p-ordinary p-stabilized (in the
sense of [55, p. 538]) normalized eigen cusp forms of tame level a divisor
of N and weight at least 2. Moreover, the trace of ρfλ is equal to λ ◦ trρa
for any arithmetic specialization λ of hord with λ(a) = 0. For an arithmetic
specialization λ of hord, denote the corresponding ordinary form by fλ and
the kernel of λ by pλ.

Definition 6.1. — The automorphic type of a minimal prime a of hord

at a prime ` 6= p is defined to be the unordered tuple AT`(a) if the automor-
phic types of π(fλ)` are equal to AT`(a) for all arithmetic specialization λ
of hord with λ(a) = 0.

Theorem 6.2. — Let a be a minimal prime of hord and ` 6= p be a
prime. Then the following hold.

(1) If WD(ρa|W`
)Fr-ss is indecomposable and has no monodromy, then

there exists an irreducible Frobenius-semisimple representation r

over R(a)intal[1/p] such that WD(ρa|W`
)Fr-ss is isomorphic to r over

Q(a) and WD(ρfλ |W`
)Fr-ss is isomorphic to λintal ◦ r for any arith-

metic specialization λ of hord with λ(a) = 0.
(2) If WD(ρa|W`

)Fr-ss is indecomposable and has nonzero monodromy,
then there exists an R(a)intal-valued character χ of W` such
that WD(ρa|W`

)Fr-ss is isomorphic to Sp2(χ) over Q(a) and
WD(ρfλ |W`

)Fr-ss is isomorphic to λintal ◦ Sp2(χ) for any arithmetic
specialization λ of hord with λ(a) = 0.
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(3) If WD(ρa|W`
)Fr-ss is decomposable, then there existR(a)intal-valued

characters χ1, χ2 of W` such that WD(ρa|W`
)Fr-ss is isomorphic to

χ1 ⊕ χ2 over Q(a) and WD(ρfλ |W`
)Fr-ss is isomorphic to λintal◦

(χ1 ⊕χ2) for any arithmetic specialization λ of hord with λ(a) = 0.

Consequently, the notion of automorphic types of minimal prime ideals of
hord is well-defined.

The constancy of local automorphic types of arithmetic specializations is
also established in [40, §12.7.14], [43, Remark 2.4], [26, Lemma 2.14], [25,
Lemma 3.9] (see also the proof of [24, Proposition 2.2.4]).

Proof. — Note that trρa is a pseudorepresentation of GQ with values in
R(a) and ρa is irreducible. For any prime p of R(a), the ring R(a)p is
Noetherian. So its Henselization R(a)hp is also Noetherian (see [29, Théo-
rème 18.6.6(v)]). Moreover R(a)hp is Hausdorff by Krull’s intersection the-
orem (see [38, Theorem 8.10]). Fix a minimal prime np of R(a)hp . For each
arithmetic specialization λ of hord with λ(a) = 0, ρfλ is an irreducible
GQ-representation (by [46, Theorem 2.3]) over an algebraic closure of the
residue field of R(a)hpλ/npλ . So, by [42, Théorème 1], ρfλ lifts to a repre-
sentation of GQ over R(a)hpλ/npλ and the trace of this lift coincides with
the trace of ρa. Note that the map R(a) → R(a)hp/np is injective (since
the map R(a)p → R(a)hp is flat (by [29, Théorème 18.6.6(iii)]) and flat
maps satisfy going down property by [37, (5.D) Theorem 4]) and ρa|G` is
monodromic by Grothendieck’s monodromy theorem (see the proof of [3,
Lemma 7.8.14]). Moreover the G`-representation ρfλ |G` is pure (by [9]). So
Theorem 4.3 gives parts (1), (2), (3). Since local-global compatibility holds
for cusp forms (by [9]) and each minimal prime ideal of hord is contained in
the kernel of some arithmetic specialization of hord (as hord is free of finite
rank over Zp[[X]]), the final part follows. �

6.1.2. Automorphic representations for definite unitary groups

Let F be a CM field, F+ be its maximal totally real subfield. Let n > 2
be an integer and assume that if n is even, then n[F+ : Q] is divisible by 4.
Let ` > n be a rational prime and assume that every prime of F+ lying
above ` splits in F . Let K be a finite extension of Q` in Q` that contains
the image of every embedding F ↪→ Q`. Let S` denote the set of places of
F+ lying above `. Let R denote a finite set of finite places of F+ disjoint
from S` and consisting of places that split in F . For each place v ∈ S` ∪R,
choose once and for all a place ṽ of F lying above v. For v ∈ R, let Iw(ṽ)
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be the compact open subgroup of GLn(OFṽ ) and χv be the character as
in [28, §2.1, 2.2].
Let G be the reductive algebraic group over F+ as in [28, §2.1]. For

each dominant weight λ (as in [28, Definition 2.2.3]) for G, the group
G(A∞,RF+ ) ×

∏
v∈R Iw(ṽ) acts on the spaces Sλ,{χv}(Q`), Sord

λ,{χv}(OK) (as
in [28, Definitions 2.2.4, 2.4.2]). For an irreducible constituent π of the
G(A∞,RF+ )×

∏
v∈R Iw(ṽ)-representation Sλ,{χv}(Q`), let WBC(π) denote the

weak base change of π to GLn(AF ) (which exists by [36, Corollaire 5.3])
and let rπ : GF → GLn(Q`) (as in [28, Proposition 2.7.2]) denote the
unique (up to equivalence) continuous semisimple representation attached
to WBC(π) via [12, Theorem 3.2.3].
An irreducible constituent π of theG(A∞,RF+ )×

∏
v∈R Iw(ṽ)-representation

Sλ,{χv}(Q`) is said to be an ordinary automorphic representation for G if
πU(lb,c) ∩ Sord

λ,{χv}(U(lb,c),OK) 6= 0 for some integers 0 6 b 6 c (see [28,
Definition 2.2.4, §2.3] for details). Let U be a compact open subgroup of
G(A∞F+), T be a finite set of finite places of F+ containing R∪S` and such
that every place in T splits in F (see [28, §2.3]). Let Tord denote the univer-
sal ordinary Hecke algebra TT,ord

{χv} (U(l∞),OK) (as in [28, Definition 2.6.2]).
Let Λ be the completed group algebra as in [28, Definition 2.5.1]. By defi-
nition of Tord, it is equipped with a Λ-algebra structure and is finite over
Λ. An OK-algebra homomorphism f : A→ Q` is said to be an arithmetic
specialization of a finite Λ-algebra A if ker(f |Λ) is equal to the prime ideal
℘λ,α (as in [28, Definition 2.6.3]) of Λ for some dominant weight λ for G
and a finite order character α : Tn(l) → O×K . By [28, Lemma 2.6.4], each
arithmetic specialization η of Tord determines an ordinary automorphic
representation πη for G. An arithmetic specialization η of Tord is said to
be stable if WBC(πη) is cuspidal.
Let m be a non-Eisenstein maximal ideal of Tord (in the sense of [28,

§2.7]). Let rm denote the representation of GF+ as in [28, Proposition 2.7.4].
Then by restricting it to GF and then composing with the projection
GLn(Tord

m )×GL1(Tord
m )→ GLn(Tord

m ), we get a continuous representation
GF → GLn(Tord

m ) which is denoted by rm by abuse of notation. Since m is
non-Eisenstein, the GF -representations η ◦ rm and rπη are isomorphic for
any arithmetic specialization η of Tord

m (by [28, Propositions 2.7.2, 2.7.4]).

Definition 6.3. — Let w be a finite place of F not lying above ` and
a be a minimal prime of Tord. If the maximal ideal of Tord containing a is
non-Eisenstein and some stable arithmetic specialization of Tord vanishes
on a, then the automorphic type of a at w is defined to be the unordered
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tuple ATw(a) if the automorphic types of WBC(πη)w are equal to ATw(a)
for all stable arithmetic specialization η of Tord with η(a) = 0.

Theorem 6.4. — Let w - ` be a finite place of F , a be a minimal prime
of Tord

m and m be the maximal ideal of Tord containing a. Suppose m is non-
Eisenstein. Denote the quotient ring Tord

m /a by R(a) and the representation
rm mod a by ra. Then there exist positive integers m, t1 6 · · · 6 tm and
irreducible Frobenius-semisimple representations r1, · · · , rm of Ww over
R(a)intal[1/`] such that WD(ra|Ww

)Fr-ss is isomorphic to ⊕mi=1Spti(ri) over
Q(R(a)) and

(6.1) WD(rπη |Ww
)Fr-ss '

m⊕
i=1

Spti(η
intal ◦ ri)

for any stable arithmetic specialization η of R(a). Consequently, the notion
of local automorphic types of minimal prime ideals of Tord is well-defined.
Moreover, two minimal prime ideals of Tord are contained in two non-
Eisenstein maximal ideals and are both contained in the kernel of a stable
arithmetic specialization of Tord only if their automorphic types at any
finite place v - ` of F are the same.

Proof. — If π is an irreducible constituent of the G(A∞,RF+ )×
∏
v∈R Iw(ṽ)-

representation Sλ,{χv}(Q`) such that WBC(π) is cuspidal, then for any fi-
nite place w of F not dividing `, rπ|Gw is pure by [8, Theorems 1.1, 1.2]
and the proofs of Theorem 5.8, Corollary 5.9 of loc. cit. Note that ra|Ww

is monodromic by Grothendieck’s monodromy theorem (see [49, pp. 515–
516]). So by Theorem 4.5, we obtain integers m, t1, · · · , tm and representa-
tion r1, · · · , rm with the prescribed properties such that WD(ra|Ww

)Fr-ss is
isomorphic to ⊕mi=1Spti(ri) over Q(R(a)) and equation (6.1) holds for any
stable arithmetic specialization η of R(a). By [8, Theorem 1.1] on local-
global compatibility of cuspidal automorphic representations for GLn, the
notion of local automorphic types is well-defined. Finally, note that if a
minimal prime ideal b of Tord is contained in some non-Eisenstein maximal
ideal of Tord, then the local automorphic type of b at w is equal to the
automorphic type of WBC(πη)w for any stable arithmetic specialization η
of Tord with η(b) = 0. So the last statement follows. �

6.2. Eigenvarieties

Let X be a rigid analytic space over a finite extension of Qp. The restric-
tion map between the global sections of two admissible open subsets U ⊃ V
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of X is denoted by resUV . For a point x of X, denote the rigid analytic
local ring of X at x by OX,x, the map O(X)→ OX,x by locX,x, the maxi-
mal ideal of OX,x by mx, the residue field of OX,x by k(x). Note that πmx
denotes the map OX,x → k(x). If x is an element of X(Qp), then the map
O(X)→ Qp is denoted by evX,x. For any admissible open subset U of X,
the ring O(U) is equipped with the coarsest locally convex topology such
that the restriction map O(U)→ O(V ) is continuous for any open affinoid
V ⊂ U (where O(V ) is equipped with its Banach algebra topology).
Let E/Q be an imaginary quadratic field and G denote the definite

unitary group U(m) (as in [3, §6.2.2]) in m > 1 variables. We assume
that p splits in E. Let H denote the Hecke algebra as in [3, §7.2.1]. Let
Z0 ⊂ Homring(H,Qp) × Zm be the set of pairs (ψ(π,R), k) associated to
the p-refined automorphic representations (π,R) of any weight k (see [3,
§7.2.2, 7.2.3]). Let e be the idempotent as in [3, §7.3.1] and let Ze ⊂ Z0
denote the subset of (ψ(π,R), k) such that e(πp) 6= 0. We assume that Ze
is nonempty. Then by [3, §7.3], there exists an eigenvariety for Ze, i.e.,
there exist a reduced rigid analytic space X over a finite extension L of
Qp, a ring homomorphism ψ : H → O(X), an analytic map ω : X →
Hom((Z×p )m,Grig

m )×Qp L and an accumulation and Zariski-dense subset Z
of X(Qp) such that conditions (i), (ii), (iii) of [3, Definition 7.2.5] hold.
In particular, z 7→ (evX,z ◦ ψ, ω(z)) induces a bijection Z

∼−→ Ze. The
set Z is called the set of arithmetic points of X. Let Zreg ⊂ Z be the
subset of points parametrizing the p-refined automorphic representations
(π,R) such that π∞ is regular and the semisimple conjugacy class of πp
has m distinct eigenvalues (see [3, §7.5.1]). By [3, Lemma 7.5.3], Zreg is a
Zariski-dense subset of X. For each z ∈ Z, we fix a p-refined automorphic
representation πz of U(m) such that z corresponds to πz under the bijec-
tion Z

∼−→ Ze. For each z ∈ Zreg, let ρz,p : GE → GLm(Qp) denote the
unique (up to equivalence) continuous semisimple representation attached
to WBC(πz) via [12, Theorem 3.2.3]. By [3, Proposition 7.5.4], there exists
an m-dimensional continuous pseudorepresentation T : GE → O(X) such
that evX,z ◦ T = trρz,p for all z ∈ Zreg. Let Zst

reg denote the set of points
z ∈ Zreg such that WBC(πz) is cuspidal. Note that by [8, Theorems 1.1,
1.2], the representation ρz,p|Ww

is pure for any z ∈ Zst
reg. For z ∈ Zst

reg, the
Galois representation ρz,p is expected to be irreducible. It is known when
m 6 3 by [5] and in many cases when m = 4 by an unpublished work of Ra-
makrishnan. By [44, Theorem D], it is known for infinitely many primes p.

Definition 6.5. — Let w be a finite place of E not lying above p and
Y0 be an irreducible component of X such that Zst

reg ∩ Y0 is nonempty.
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The automorphic type of Y0 at w is defined to be the unordered tuple
ATw(Y0) if the automorphic types of WBC(πz)w are equal to ATw(Y0) for
all z ∈ Zst

reg ∩ Y0.

Let ξ : X̃ → X be a normalization ofX. Let C be a connected component
of X̃ and Y be the irreducible component ξ(C) (together with its canonical
structure of reduced rigid space) of X. By [16, Lemma 2.2.1 (2)], the map
ξ|C : C → Y is a normalization. For each x ∈ X(Qp)∩Y , we fix a point x̃ in
C(Qp) which goes to x under the map C(Qp)→ Y (Qp). Note that O(C) is
a domain by [16, Lemma 2.1.4]. So by [53, Theorem 1], there exists a unique
(up to equivalence) semisimple representation σC of GE over Q(O(C)) such
that trσC = res

X̃C
◦ ξ ◦ T .

Lemma 6.6. — For any finite place w of E not lying above p, the re-
striction of σC to Ww is monodromic.

Proof. — Let U ⊂ C be a nonempty open affinoid. Let σU be a semisim-
ple representation of GE over Q(O(U)) such that trσU = resCU ◦res

X̃C
◦ξ◦

T . Note that the pseudorepresentation T : GE → O(X) (introduced before
Definition 6.5) is continuous by [3, Proposition 7.5.4] where GE has the
profinite topology and O(X) has the topology mentioned in the beginning
of §6.2. So the pseudorepresentation resCU ◦res

X̃C
◦ξ◦T is also continuous.

Hence the restriction of σU to Ww is monodromic by [3, Lemmas 7.8.11(i),
7.8.14]. Note that the map resCU is injective by [16, Lemma 2.1.4]. Since
the semisimple representations σC ⊗ Q(O(U)) and σU have same traces,
they are isomorphic. So σC |Ww is monodromic. �

Theorem 6.7. — Let w - p be a finite place of E. Suppose that the
intersection of Zst

reg with any irreducible component of X is nonempty and
for any z ∈ Zst

reg, the Galois representation ρz,p is irreducible. Then there
exist positive integers n, t1, · · · , tn, irreducible Frobenius-semisimple repre-
sentations r1, · · · , rn of Ww over O(C)intal such that the following hold.

(1) There is an isomorphism

WD(σC |Ww
)Fr-ss '

n⊕
i=1

Spti(ri).

(2) If z ∈ Zst
reg ∩ Y , or more generally if z ∈ Y (Qp) such that evX,z ◦ T

is the trace of an irreducible representation ρz,p : GE → GLm(Qp)
and ρz,p|Ww is pure, then there is an isomorphism

WD(ρz,p|Ww)Fr-ss '
n⊕
i=1

Spti(π
intal
mz̃
◦ locintal

C,z̃ ◦ ri).
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(3) Let V be a nonempty connected admissible open subset of C and
(ρV , NV ) : Ww → GLm(O(V )intal) be a Weil–Deligne representa-
tion such that resCV ◦res

X̃C
◦ξ◦T = trρV and fV ◦(ρV , NV ) is pure

for some map fV : O(V )intal → Qp. Then there is an isomorphism

((ρV , NV )⊗O(V ) Q(O(V )))Fr-ss ' (resintal
CV ◦ (ρC , NC))⊗O(V )intal Q(O(V )).

Consequently, the notion of local automorphic types of irreducible com-
ponents of X is well-defined. Moreover, two irreducible components of X
intersect at a point of Zst

reg only if their local automorphic types at any
finite place of E outside p are the same.

Proof. — Note that res
X̃C
◦ ξ ◦ T is a pseudorepresentation of GE with

values in O(C). It is equal to the trace of the semisimple representation
σC , whose restriction to Ww is monodromic by Lemma 6.6. Let z be a
point as in part (2). Then the tuple (OC,z̃ ,mz̃ , k(z̃), locC,z̃ , ρz,p) lies in the
irreducibility and purity locus of res

X̃C
◦ ξ ◦T . So parts (1), (2) follow from

Theorem 4.5 and part (3) follows from Theorem 4.3. By [8, Theorem 1.1]
on local-global compatibility of cuspidal automorphic representations for
GLn, the notion of local automorphic types is well-defined. Finally, note
that if an irreducible component Y0 of X has nonempty intersection with
Zst

reg, then its automorphic type at a finite place w of E outside p is equal
to the automorphic type of WBC(πz)w for any z ∈ Zst

reg∩Y0. Consequently,
if two irreducible components of X intersect at a point of Zst

reg, then their
local automorphic types at any finite place of E outside p are the same.
This completes the proof. �
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