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QUADRO-QUADRIC CREMONA TRANSFORMATIONS
IN LOW DIMENSIONS

VIA THE JC-CORRESPONDENCE

by Luc PIRIO & Francesco RUSSO (*)

Abstract. — It has been previously established that a Cremona transforma-
tion of bidegree (2,2) is linearly equivalent to the projectivization of the inverse
map of a rank 3 Jordan algebra. We call this result the “JC-correspondence”. In
this article, we apply it to the study of quadro-quadric Cremona transformations
in low-dimensional projective spaces. In particular we describe new very simple
families of such birational maps and obtain complete and explicit classifications in
dimension 4 and 5.
Résumé. — Il a été établit précédemment qu’une transformation de Crémona

de bidegré (2,2) est linéairement équivalente à la projectivation de l’inversion d’une
algèbre de Jordan de rang 3. Ce résultat (appelé la “correspondance JC”) est uti-
lisé dans le présent article pour étudier les transformations birationnelles quadro-
quadriques des espaces projectifs de petite dimension. En particulier, nous décri-
vons de nouvelles familles très simples de telles applications birationnelles et nous
obtenons leur classifications complètes et explicites en dimension 4 et 5.

Introduction

The study of Cremona transformations is a quite venerable subject which
received a lot of classical contributions (we refer to [37] for a rich overview
of the field up to 1928, to the classical reference [17] and to [36] for an
approach to the subject with classical methods but with a view to higher
dimensional cases). More recently there has been a renewed interest in the
subject, also for the relations with complex dynamics which inspired the
solution to the longstanding problem about the simplicity of the group

Keywords: Cremona transformation, Jordan algebra.
Math. classification: 14E07, 17Cxx.
(*) The first author is partially supported by the franco-italian research network
GRIFGA and by the P.R.A. of the Università degli Studi di Catania.
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of Cremona transformations in the plane, answered with the negative in
[6]. The situation in the plane can be considered quite clear, also consid-
ering the classification of finite subgroups of the Cremona group in the
plane completed recently by Blanc (see [3] and the references therein). In
higher dimension the structure is more complicated and less clear. For in-
stance, the generators of the Cremona groups are unknown in contrast to
the case of the plane where the classical Noether-Castelnuovo Theorem
assures that the ordinary quadratic transformation and projective trans-
formations generate the whole group. Thus since the very beginning the
study of Cremona transformations in higher dimensional projective spaces
was developed only for particular classes (see for example [10, 27, 28]) or for
specific degrees of the homogeneous polynomials defining the map. From
this point of view the first cases of interest are those defined by quadratic
polynomials (see [35, 5, 28]) and thus the simplest examples of Cremona
transformations, different from projective automorphisms, are those whose
inverse is also defined by quadratic polynomials, dubbed quadro-quadric
Cremona transformations. In [28] one finds the complete classification of
quadratic Cremona transformations of P3 while [35] considers the case of
P4, describing the general base locus scheme of these Cremona maps (see
also the discussion in Section 3.4.1). The more recent paper [5] deals with
the classification of general quadro-quadric Cremona transformations in P4

and P5 and provides some series of examples in arbitrary dimension.

A completely new approach to the subject of quadro-quadric Cremona
transformations was begun in [32] and completed in [31], where general
results and structure Theorems for these maps were presented. Indeed, in
[31], we proved that for every n > 3, there are equivalences between:

• irreducible n-dimensional non degenerate projective varieties X ⊂
P2n+1 different from rational normal scrolls and 3-covered by ratio-
nal cubic curves, up to projective equivalence;

• n-dimensional complex Jordan algebras of rank three, up to iso-
morphisms;

• quadro-quadric Cremona transformations of Pn−1, up to linear
equivalence(1) .

(1)Two Cremona maps f1, f2 of Pn are said to be linearly equivalent if f2 = g ◦ f1 ◦ h
for some linear automorphisms g, h ∈ Aut(Pn).
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The equivalence between these sets has been named the ‘XJC-correspon-
dence’ in [31](2) . In this text, we use mainly one part of this correspondence,
which we call the ‘JC-correspondence’. Essentially, it asserts that for every
n > 3, any quadro-quadric Cremona transformation f : Pn−1 99K Pn−1 is
linearly equivalent to the projectivization of the adjoint map x 7→ x# of
a n-dimensional rank 3 Jordan algebra, the isomorphism class of which is
uniquely determined by the linear equivalence class of f (see Section 1 for
notation and definitions).
The JC-correspondence does not only offer a conceptual interest but

also provides an effective way to study quadro-quadric Cremona transfor-
mations. Indeed, the theory of Jordan algebras is now well developed and
formalized, so several quite deep results and powerful algebraic tools to
study them conceptually and/or effectively are now available.
Armed with the powerful algebraic machinery of the theory of Jordan

algebras, in this paper we
• describe a general algebraic method to construct new quadro-quadric
Cremona transformations starting from known ones (Section 2.1);

• use the above method to construct, starting from the standard Cre-
mona transformation of P2, a very simple but new countable fam-
ily of quadro-quadric Cremona transformations of Pn for arbitrary
n > 2 (Section 2.2.1);

• use the previous construction to produce continuous families of
quadro-quadric Cremona transformations starting from those as-
sociated to simple rank three Jordan algebras (Section 2.2.3);

• describe two distinct general constructions of cubo-cubic Cremona
transformations starting from a quadro-quadric one (Section 2.3);

• give complete classifications of rank 3 Jordan algebras in dimension
3, 4 and 5 (in Sections 3.2, 3.3 and 3.4) and deduce from them the
complete classifications, up to linear equivalence, of quadro-quadric
Cremona transformations of Pn for n = 2, 3 and 4 (see Table 2,
Table 3 and Table 6 respectively);

(2)Note that Jordan algebras are considered up to isomorphisms in the present paper
whereas they were originally considered up to isotopies in [31]. If the later setting is more
natural from a categorical point of view (see [31, Remark 4.2]), the XJC-correspondence
still holds true at the set-theoretical level when considering rank 3 Jordan algebras up to
isomorphisms. The reason behind this is the fact that over the field of complex numbers,
two isotopic Jordan algebras are actually isomorphic (cf. [25, Problem 7.2.(6)]).

TOME 64 (2014), FASCICULE 1



74 Luc PIRIO & Francesco RUSSO

• provide a detailed analysis of the quadro-quadric Cremona transfor-
mations of P4 (in Section 3.4). For each Cremona transformation of
Table 6, we describe as geometrically and concisely as possible the
associated base locus scheme and the associated homaloidal system
of quadric hypersurfaces, determine its type and its multidegree (see
Table 7, Table 8 and Table 9). We also offer pictures of these
base locus schemes (see Figure 5, Figure 6);

• give (without proof) a complete list of involutorial normal forms
for elements of quadro-quadric Cremona transformations of P5

(cf. Table 10).

Acknowledgments. The first author is very grateful to Professor H. Pe-
tersson for having copied and sent to him Wesseler’s report [40].

1. Notation and definitions

1.0.1. General notation and definitions

If f = [f0 : · · · : fn] : Pn 99K Pn is a Cremona transformation, then
Bf ⊂ Pn will be the base locus scheme of f , that is the scheme defined by
the n+1 homogeneous forms f0, . . . , fn that are assumed without common
factor. If all these are of degree d1 > 1 and if the inverse f−1 : Pn 99K Pn
of f is defined by forms of degree d2 without common factor, we say that
f has bidegree (d1, d2) and we put bdeg(f) = (d1, d2). The set of Cremona
transformations of Pn of bidegree (d1, d2) will be indicated by Bird1,d2(Pn).

By definition, a quadro-quadric Cremona transformation is just a Cre-
mona transformation of bidegree (2, 2).
Two Cremona transformations f, g ∈ Bird1,d2(Pn) are said linearly equiv-

alent (or just equivalent for short) if there exist projective transformations
`1, `2 : Pn → Pn such that g = `1 ◦ f ◦ `2.
We define the type of a Cremona transformation f : Pn 99K Pn as the

irreducible component of the Hilbert scheme of Pn to which Bf belongs.
We put Pi(t) =

(
t+i
i

)
so that P0 = 1, P1(t) = t+ 1 and P2(t) = (t+2)(t+1)

2 .

By definition, a Jordan algebra is a commutative complex algebra J with
a unity e such that the Jordan identity x2(xy) = x(x2y) holds for every
x, y ∈ J (see [4, 18, 25]). Here we shall assume too that J is finite di-
mensional. It is well known that a Jordan algebra is power-associative. By
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definition, the rank rk(J) of J , also called the degree of J in the classical
literature (such as [18]), is the complex dimension of the (associative) sub-
algebra 〈x〉 of J spanned by the unity e and by a general element x ∈ J .

The simplest examples of Jordan algebras are those constructed from
associative algebras. Let A be a non-necessarily commutative associative
algebra with a unity. Denote by A+ the vector space A with the sym-
metrized product a · a′ = 1

2 (aa′ + a′a). Then A+ is a Jordan algebra. Note
that A+ = A if A is commutative.

By JmQ,r we will indicate a m-dimensional direct sum C ⊕W endowed
with the Jordan product (λ,w) · (λ′, w′) = (λλ′ − Q(w,w′), λw′ + λ′w),
where Q(·, ·) stands for the polarization of a quadratic form Q on W , of
rank r. When we write JmQ we will assume that W = Cm−1 and that
Q(x) =

∑m−1
i=1 x2

i in the standard system of coordinates x = (x1, . . . , xm−1)
on Cm−1. Otherwise when the integer r < m−1 is specified we shall assume
that Q(x) =

∑r
i=1 x

2
i . Except when W = 0, a Jordan algebra JmQ,r has

rank 2.

A Jordan algebra of rank 1 is isomorphic to C (with the standard multi-
plicative product). It is classical and easy to prove that any rank 2 Jordan
algebra is isomorphic to an algebra JmQ,r defined above (cf. [4, Satze 7.1]).
In this paper, we will mainly consider Jordan algebras of rank 3. These are
the simplest Jordan algebras which have not been yet classified in arbitrary
dimension. Due to the JC-correspondence their classification is equivalent
to that of quadro-quadric Cremona transformations in arbitrary dimension,
which shows the complexity of the problem.

Let J be a rank 3 Jordan algebra. The general theory (as presented on
page 221 of [18]) specializes in this case (cf. [25, II. 4]) and ensures the
existence of a linear form T : J → C (the generic trace), of a quadratic
form S ∈ Sym2(J∗) and of a cubic form N ∈ Sym3(J∗) (the generic norm)
such that x3−T (x)x2 +S(x)x−N(x)e = 0 for every x ∈ J . Moreover, x is
invertible in J if and only if N(x) 6= 0 and in this case x−1 = N(x)−1

x#,
where x# stands for the adjoint of x defined by x# = x2 − T (x)x+ S(x)e.
The adjoint satisfies the identity (x#)# = N(x)x.

The algebra Mn(C) of n×n matrices with complex entries is associative
hence Mn(C)+ is a Jordan algebra. According to Cayley-Hamilton Theo-
rem, it is of rank n, the generic trace of M ∈ Mn(C)+ is the usual one,
N(M) = det(M) and the adjoint is the matricial one, that is the transpose
of the cofactor matrix of M .

TOME 64 (2014), FASCICULE 1



76 Luc PIRIO & Francesco RUSSO

For x = (λ,w) ∈ JmQ,r, one has x2 − T (x)x+N(x)e = 0 with T (x) = 3λ
and N(x) = λ2 + q(w). Thus it can be verified that x# = (λ,−w) in this
case.
More generally let J be a power-associative algebra with r = rk(J) >

2. Then defining similarly the adjoint of an element x ∈ J , the identity
(x#)# = N(x)r−2x holds so that the projectivization of the adjoint [#] :
P(J) 99K P(J) is a birational involution of bidegree (r − 1, r − 1) on P(J).

The inverse map x 7→ x−1 = N(x)−1
x# on J naturally induces a bi-

rational involution ̃ : P(J × C) 99K P(J × C) of bidegree (r, r), defined
by ̃([x, r]) = [rx#, N(x)]. Such maps were classically investigated by N.
Spampinato and C. Carbonaro Marletta, see [38, 22, 23], who produced ex-
amples of interesting Cremona involutions in higher dimensional projective
spaces. It is easy to see that setting J̃ = J ×C, then for (x, r) ∈ J̃ one has
(x, r)# = (rx#, N(x)) so that the map ̃ is the adjoint map of the algebra J̃ .
A Cremona transformation of bidegree (r, r) will be called of Spampinato
type if it is linearly equivalent to the adjoint of a direct product J × C
where J is a power-associative algebra of rank r > 2. In [8] and [9], Del
Pezzo studied examples of quadro-quadric Cremona transformations in P3

and in P4. From our point of view, these examples are part of the series of
Spampinato type Cremona transformations on Pn associated to J nQ,0, i.e.
they are linearly equivalent to the projectivizations of the involutions of
the rank three Jordan algebras C× J nQ,0.
We will denote by J, J ′,J , ... complex Jordan algebras of finite dimension

and J×J ′ will stand for the direct product of Jordan algebras. By definition,
the radical Rad(J) of J is its maximal solvable ideal (cf. [18, p. 192]). It
will be denoted by R when no confusion could arise . The semi-simple part
of J , denoted by Jss, is the quotient J/R of J by its radical. As its name
suggests, it has no radical, i.e. Rad(Jss) = 0.

By B(J) ⊂ P(J) we shall indicate the base locus scheme of the birational
involution [#] associated to J and IB(J) will be the graded ideal generated
by the homogenous polynomials defining the adjoint of J .

1.0.2. Some non-reduced punctual schemes in projective spaces

For integers n, k such that 0 6 k < n and for any nonnegative integer t,
one defines a t-multiple Pk in a Pn as a subscheme of Pn with homogeneous
ideal equal to the t-th power of the ideal of a linear subspace of dimension
k in Pn.(3)

(3)This terminology is not standard. For instance, it does not correspond exactly to the
one used in [11].

ANNALES DE L’INSTITUT FOURIER
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We shall also provide some pictures of the base locus schemes of quadro-
quadric Cremona maps in dimension 2, 3 and 4. Many of these base loci
contain a non-reduced punctual scheme as an irreducible component of
particular type, which we now describe and picture in this subsection.

− Scheme τ . If τ0 = Proj
(
C[a, b]/(b, a2)

)
is the length 2 affine scheme

Spec
(
C[ε]/(ε2)

)
naturally embedded in C ⊂ P1, we will designate by τ any

scheme in a projective space Pn obtained as the image ι∗(τ0) for a linear
embedding ι : P1 ↪→ Pn. More intuitively, τ is a punctual scheme in a
projective space formed by a point p plus another point infinitely near to
it. Since geometrically τ is nothing but a tangent direction at one point,
this scheme will be pictured as follows in the sequel:

Figure 1. Pictural representation of τ

− Scheme ξ. Let ξ0 ' Spec(C[a, b]/(a2, ab, b2)) be a double point in P2.
We will designate by ξ any scheme in a projective space Pn obtained as the
image ι∗(ξ0) for a linear embedding ι : P2 ↪→ Pn. Intuitively, τ is a punctual
scheme in a projective space formed by a point p plus two distinct points
infinitely near of p. Geometrically τ is nothing but two tangent directions
of a projective space at a given point, it is reasonable to picture this scheme
as follows in the sequel:

Figure 2. Pictural representation of ξ

The reader has to be aware that this representation is a bit misleading:
indeed, if p stands for the support of ξ, there is no distinguishable tangent
direction at p associated to ξ. What is intrinsically attached to ξ is the
pencil of tangent directions spanned by the two represented in Figure 2. The
projective tangent space of ξ at p coincides with the 2-plane 〈ξ〉 spanned
by ξ.

− Scheme η. Let η0 = Proj
(
C[a, b]/(b, a3)

)
be the length 3 affine scheme

Spec
(
C[ε]/(ε3)

)
naturally embedded in C ⊂ P1. We will designate by η any

scheme in a projective space Pn obtained as the image ν∗(η0) for a quadratic

TOME 64 (2014), FASCICULE 1



78 Luc PIRIO & Francesco RUSSO

Veronese embedding ν : P1 ↪→ Pn. More intuitively, η is a punctual scheme
in a projective space formed by a point p = ηred lying on a conic C ⊂ Pn,
plus another point p′ infinitely near to p on C, plus a third point p′′ still on
C, infinitely near to p′. In geometrical terms η is nothing but an osculating
flag of the second order(4) to a smooth conic, thus this scheme will be
pictured as follows in the sequel:

Figure 3. Pictural representation of η

By definition, the tangent line to η, noted by Tpη, is the line determined
by p and p′, which is included in the 2-plane 〈η〉 ⊂ Pn spanned by η, which
is also the projective tangent space to η at p.
Let H be a hypersurface of Pn. We will say that H osculates (or is

osculating) along η if η ⊂ H as subschemes of Pn. More geometrically,
this means that if C ′ ⊂ Pn is any curve passing through p with second
osculating flag at this point equal to the one associated to η, then the
intersection multiplicity between C ′ and H at p is at least 3.

− Scheme χ. Let’s define

χ = Proj
(
C[x, y, z, t]/(x2, xy, y2, z2, xz, 2yz − xt)

)
⊂ P3.

This scheme can be characterized from an algebraic and geometric point of
view as follows: according to [26, p. 445], up to projective equivalence, there
exist only two punctual degree four schemes in P3 defined by six quadratic
equations. The projective tangent space at the supporting point of one of
them is the whole P3 while χ is the other one. By definition, the tangent
plane to χ is the projective tangent space to χ at the supporting point
p = χred. It is a 2-plane denoted by Tpχ that is strictly contained in the
linear span 〈χ〉 = P3 of χ.

More intuitively and geometrically, χ can be obtained as follows: let ` be
a line in P3 that is transverse to the scheme η described just above (this
means that ` passes through p = ηred and is distinct from Tpη). For every

(4)The osculating flag of order k of a (reduced) curve C ⊂ Pn at a smooth point c is
the flag {c} = T

(0)
c C ⊂ T

(1)
c C ⊂ · · · ⊂ T

(k)
c C where for any non-negative integer l,

T
(l)
c C ⊂ Pn stands for the osculating space of order l to C at c.
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x ∈ ` \ {p}, let χx be the union of η with x. Then clearly, χ is the flat limit
of the schemes χx when x tends to p.
This geometrical description of χ explains that this subscheme will be

pictured as follows in the sequel:

Figure 4. Pictural representation of χ

The reader has to be aware that this picture is a bit misleading: the
presence of two rectilinear arrows in it does not mean that there are two
distinguishable tangent directions at p associated to χ. What is intrinsi-
cally attached to χ is the 2-plane spanned by the represented two tangent
directions, which is nothing but the tangent plane to χ.

Let H ⊂ P3 be a surface. The schematic condition that H contains a
scheme χ translates geometrically as the fact that H is tangent to a 2-
plane π at a fixed point p ∈ π and osculates at order two to a smooth conic
C tangent to π at this point.

2. Constructions and new families of quadro-quadric
Cremona transformations

We now use some theory of non-associative algebras to construct alge-
braically or/and geometrically new families of involutorial Cremona trans-
formations in arbitrary dimensions.

2.1. Construction of new quadro-quadric Cremona
transformations from known ones

As far as we know, very little is known about explicit examples of quadro-
quadric Cremona transformations of Pm, at least for large enough m. In
fact, there is almost no description in the literature of such birational maps
in higher dimension. A notable exception is the series of quadratic ele-
mentary Cremona transformations (and their possible degenerations), that
have been considered in arbitrary dimension by classical authors. They are

TOME 64 (2014), FASCICULE 1
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obtained easily from an irreducible quadric hypersurface in Pm+1 by two
different projections from smooth points. Recently, Bruno and Verra have
described (cf. Proposition 6.2 of [5]) two new families of Cremona trans-
formations of bidegree (2, 2), one in each dimension m > 4, by specifying
the associated base locus schemes that can be :

(A) the union Π2 ∪ Π3 ∪ ` ⊂ Pm where Πi is a projective subspace of
codimension i for i = 2, 3 and where ` is a line such that Π3 and
` are disjoint and each intersects Π2 in dimension m − 4 and 0
respectively;

(B) the schematic union of a double linear subspace P of dimension
m− 3 in a hyperplane H with a smooth conic C that is tangent to
H at the point C ∩ Pred.

By the JC-Correspondence recalled above and proved in [31], we know
that, modulo composition by linear automorphisms, quadro-quadric Cre-
mona transformations are nothing but adjoints of rank 3 Jordan algebras.
Here, we use this result to describe a general construction of new Cremona
transformations of bidegree (2, 2) starting from known ones. It seems to be
unknown despite its simplicity (in particular, see Section 2.2.1 below).

Let J be a Jordan algebra and M1,M2 be two Jordan J-(bi)modules
(see [18]): for i = 1, 2, Mi is a (non-unital) Jordan algebra and there is a
bilinear product J ×Mi → Mi : (x,mi) 7→ x ·mi such that Ji = J ⊕Mi

with the product defined explicitly by

(x,mi) · (x′,m′i) = (xx′, xm′i + x′mi +mim
′
i)

is a Jordan algebra with unity (e, 0), where e stands for the unity of J .
Then one defines the ‘gluing of M1 and M2 along J ′ as the space

J(M1,M2) = J ⊕M1 ⊕M2

endowed with the product • explicitly defined by

(x,m1,m2) • (x′,m′1,m′2)
=
(
xx′, x ·m′1 + x′ ·m1 +m1m

′
1, x ·m′2 + x′ ·m2 +m2m

′
2
)
.

It can be verified that this product verifies the Jordan identity and makes
of J(M1,M2) a Jordan algebra. Its unity is (e, 0, 0) and it contains in a
natural way J, J1 and J2 as Jordan subalgebras.
Let us remark that ifM3 is a Jordan J-module satisfying the same prop-

erties shared by M1 and M2 and if J3 stands for J ⊕M3 with the Jordan
product induced by the J-module structure on M3, then the three Jordan
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algebras J1(M2,M3), J2(M1,M3) and J3(M1,M2) identify naturally. We
will designate the corresponding algebra by J(M1,M2,M3). Of course, this
construction generalizes and can be iterated as many times as wanted.

Now assume that J1 and J2 have the same rank r and that there exists
a norm (in the sense of [4, II.Section 5]) N ∈ Symr(J∗) on J such that
N(x) = N1(x,m1) = N2(x,m2) for every (x,m1,m2) ∈ J × M1 × M2,
where Ni ∈ Symr(J∗i ) is the generic norm of Ji for i = 1, 2. For every
x ∈ J and mi ∈ Mi (i = 1, 2), let m#x

i be the projection onto Mi of
(x,mi)#. For instance, when r = 3, if T = dNe ∈ J∗ is the trace associated
to N , then for i = 1, 2, one has:

m#x
i = 2x ·mi +m2

i − T (x)mi.

Then one proves easily the following result:

Proposition 2.1. — Under the assumptions above, the algebra
J(M1,M2) has rank r and the adjoint is given by

(x,m1,m2)# =
(
x#,m#x

1 ,m#x
2
)
.

Let us now explain how this result can be put in practice to construct
families of Jordan algebras. For any automorphism ϕ : J → J of Jordan
algebras, let Mϕ

2 be the (non-unital) Jordan algebra M2 endowed with the
new bilinear map J ×M2 → M2 , (x,m2) 7→ x ·ϕ m2 = ϕ(x) · m2. This
C-bilinear map makes of Mϕ

2 a Jordan J-module, as one verifies without
difficulty.
Assume that J is semi-simple and that M1, . . . ,Mk are radicial Jordan

modules (meaning that Rad(Ji) = Mi for every i if Ji stands for the Jor-
dan algebra structure on J ⊕ Mi induced by the J-module structure of
Mi). If ϕ1, . . . , ϕm are automorphism of J , it follows from the preceding
considerations that

J(Mϕ1
1 , . . . ,Mϕm

m )
is a Jordan algebra, having the same rank as J . Note that J(Mϕ1

1 , . . . ,Mϕm
m )

and J(M1,M
ϕ2◦ϕ1

−1

2 , . . . ,Mϕm◦ϕ1
−1

m ) are clearly isomorphic, hence one can
assume that ϕ1 = Id without any real loss of generality.

Let us consider the preceding construction in the case when r = 3, the one
we are more interested in. Proposition 2.1 provides a way of constructing
new rank 3 Jordan algebras starting from finitely many rank 3 Jordan al-
gebras J1, . . . , Jm with isomorphic semi-simple parts, yielding new quadro-
quadric Cremona transformations arising from quadro-quadric Cremona
transformations with the same semi-simple part (see [31] for definitions).
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82 Luc PIRIO & Francesco RUSSO

Let us make explicit this construction in terms of Cremona transformations,
which is very simple but quite surprisingly unknown.
For i = 1, . . . ,m, let Fi be a quadratic affine lift to Vi of a quadro-quadric

Cremona transformation fi : P(Vi) 99K P(Vi) (with dimVi > 3). Assume
that the Fi’s have the same semi-simple part (see [31, Section 5.1]). In
particular there exist complex vector spaces R1, . . . , Rm and V such that
Vi = V ⊕ Ri for every i = 1, . . . ,m. Moreover there are a semi-simple
quadro-quadric map Fss ∈ Sym2(V ∗) ⊗ V (see [31, Table 2]) and bilinear
applications Fi : Vi × Ri → Ri such that for every i = 1, . . . ,m, the map
Fi can be written as

Fi
(
x,yi

)
=
(
Fss(x),Fi

(
x,yi

))
(2.1)

in some systems of linear coordinates x = (x1, . . . , xn) on V and yi =
(yi1, . . . , yiri) on Ri (where ri = dimRi for every i)(5) . To simplify, we
assume that Fss is involutorial so that there exists a cubic form N(x)
such that Fss(Fss(x)) = N(x)x for every x ∈ V . For k = 2, . . . ,m, let
ϕk be a linear automorphism of V such that ϕk ◦ Fss(x) = Fss ◦ ϕk(x) and
N(ϕk(x)) = N(x) for every x ∈ V . Then setting R = R1 ⊕ · · · ⊕ Rm, one
defines the ‘gluing of f1, . . . , fm along their semi-simple part by mean of
ϕ2, . . . , ϕm’ as the rational map

f1 · fϕ2
2 · · · · · f

ϕm−1
m−1 · fϕmm : P(V ⊕R) 99K P(V ⊕R)

which is the projectivization of the affine quadratic map given by the fol-
lowing formula

F1 · Fϕ2
2 · · · · · Fϕmm (x,y)

=
(
Fss(x),F1

(
x,y1

)
,F2

(
ϕ2(x),y2

)
, . . . ,Fm

(
ϕm(x),ym

))
in the linear coordinates (x,y) = (x,y1, . . . ,ym) on V ⊕R. Using Propo-
sition 2.1, one can prove that

f1 · fϕ2
2 · · · · · fϕmm ∈ Bir2,2

(
P(V ⊕R)

)
.

2.2. Some new families of
quadro-quadric Cremona transformations

We use now the method presented above to construct new explicit fam-
ilies of quadro-quadric Cremona transformations in arbitrary dimensions.

(5)To simplify the formula, we have abridged the notation writing Fi(x,yi) instead of
Fi

(
(x, yi),yi

)
in (2.1).
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2.2.1. A family of very simple new elements of Bir2,2(Pn) (n > 2)

Here we construct new quadro-quadric Cremona transformations that
are particularly simple. For i = 1, 2, 3, let Ai be a complex vector space of
finite dimension αi > 0 and let A be their direct sum: A = A1 ⊕ A2 ⊕ A3.
One sets α = dimA = α1 + α2 + α3 > 0 and α = (α1, α2, α3). Choosing
some linear coordinates x = (x1, x2, x3) on C3 and ai = (ai1, . . . , aiαi) on
Ai for i = 1, 2, 3, one defines a quadratic map Fα on C3 ⊕ A = C3+α by
setting

Fα(x,a1,a2,a3) =
(
x2x3, x1x3, x1x2, x1a1, x2a2, x3a3

)
(2.2)

for every (x,a) ∈ C3 ⊕ A, with of course xiai = (xiai1, . . . , xiaiαi) for
i = 1, 2, 3.

One verifies immediatly that Fα(Fα(x,a)) = x1x2x3(x,a) for every
(x,a) ∈ C3⊕A. This implies that the projectivization of Fα is an involutive
quadro-quadric Cremona transformation: for every α ∈ N3, one has

fα = [Fα] ∈ Bir2,2(P2+α).

The simplest case when α = (0, 0, 0) is well known: f (0,0,0) is noth-
ing but the standard Cremona involution of P2. The quadro-quadric maps
f (m−3,1,0) for m > 3 are the ones considered recently by Bruno and Verra
and recalled in (A) at the beginning of Section 2.1 above. Therefore al-
though some particular cases have been considered recently, it seems that
the general quadratic involution fα considered above has been overlooked
although its definition in coordinates (2.2) is certainly one of the simplest
that could be imagined.

2.2.2. A family of elements of Bir2,2(P2n) (n > 1)
constructed from the algebra C[ε]/(ε3)

Let us consider the rank 3 associative algebra C[ε]/(ε3) as a Jordan
algebra, whose adjoint is easily seen to be

(a, b, c)# = (a2,−ab, b2 − ac) =: F (a, b, c)

in the system of linear coordinates associated to the basis (1, ε, ε2).
For n > 1, let Fn : C2n+1 → C2n+1 be the quadratic map defined by

Fn(a, b1, c1, . . . , bn, cn) = (a2,−ab1, b
2
1 − ac1, . . . ,−abn, b2

n − acn)

in some coordinates (a, b1, c1, . . . , bn, cn) on C2n+1. The map Fn is ‘involu-
torial’ in the sense that

Fn
(
Fn(a, b1, . . . , cn)

)
= a3(a, b1, . . . , cn)
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for every (a, b1, . . . , cn) ∈ C2n+1. Then fn = [Fn] ∈ Bir2,2(P2n) for every
n > 1.

2.2.3. Construction of continuous families of
quadro-quadric Cremona transformations

All the families of quadro-quadric Cremona transformations presented
in the two previous subsections are countable. This a consequence of the
fact that the semi-simple parts of the afore-mentioned examples have small
automorphism groups.
In fact, using the general construction of Section 2.1, it is not difficult

to construct a continuous family of Cremona transformations of bidegree
(2, 2) by starting with a rank 3 Jordan algebra J whose semi-simple part Jss
is a rank 3 simple Jordan algebra. Indeed, in this case, the automorphism
group Aut(Jss) of Jss is a simple Lie group of positive dimension. Then if
J is an extension of Jss by a non-trivial radical R of dimension r > 0, we
can construct the family{

Jss(R,Rϕ)
∣∣ϕ ∈ Aut(Jss)

}
of rank 3 Jordan algebras of dimension dim(Jss) + 2r. By considering the
associated adjoint maps of these algebras, we get a family of quadro-quadric
Cremona transformations of Pdim(Jss)+2r−1 parametrized by the simple Lie
group Aut(Jss).

2.3. From quadro-quadric Cremona transformations to
cubo-cubic ones

By definition, a cubo-cubic Cremona transformation is a birational map
of a projective space of bidegree (3, 3). Such maps have been studied in
low dimension (see [17, 27] for instance) but except in dimension 2 and
3 no general classification or structure results are known for them. We
indicate below two distinct general constructions of cubo-cubic Cremona
maps starting from quadro-quadric ones.

The first one is based on Spampinato’s remark recalled in Section 1.

Proposition 2.2. — Let f : Pn 99K Pn, x 7→ [f0(x) : · · · : fn(x)] be a
Cremona transformation of bidegree (2, 2). If N(x) = 0 is a cubic equation
cutting out the secant scheme of the base locus scheme of f (see [31]), then

Pn+1 99K Pn+1 , [x : r] 7−→
[
rf0(x) : · · · : rfn(x) : N(x)

]
is a Cremona transformation of bidegree (3, 3) of Spampinato type.
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Of course, via the previous construction one can produce from a given
f ∈ Bir2,2(Pn), a Cremona transformation on Pn+k of bidegree (2+k, 2+k),
for any k > 1. For example from this point of view, the standard involution
of Pn−1 that is the birational map

[x1 : x2 : . . . : xn] 7−→
[
x2x3 . . . xn : x1x3 . . . xn : . . . : x1x2 . . . xn−1

]
of bidegree (n− 1, n− 1), which is the projectivization of the adjoint of the
associative and commutative n-dimensional unital algebra C×C×· · ·×C,
is obtained from the ordinary quadratic transformation of P2

[x1 : x2 : x3] 7−→
[
x2x3 : x1x3 : x1x2

]
via Spampinato construction, that is via direct product.
The second construction of a cubo-cubic Cremona transformation from

a given f ∈ Bir2,2(Pn) is also classical but less elementary and its gen-
eralization to higher degree is not clear at all. It is again based on an
algebraic construction(6) , but we shall describe it geometrically. The XJC-
Correspondence assures that we can associate to f = [F ] ∈ Bir2,2(Pn−1)
an irreducible projective varietyXf ⊂ P2n+1, of dimension n, defined as the
closure of the image of the affine parametrization x 7→ [1 : x : F (x) : N(x)],
notation as in Proposition 2.2, and which is 3-covered by twisted cubic
curves according to Proposition 3.3 of [31].
Moreover, in [31, Corollary 5.4]) we remarked that Xf is an OADP-

variety: a general point p ∈ P2n+1 belongs to a unique secant line to Xf ,
denoted by `p. For such a point p, there exists a unique unordered pair
{ap, bp} of two distinct points of Xf such that `p = 〈ap, bp〉. Thus one can
define p′ as the projective harmonic conjugate of the triple (ap, bp, p) on the

(6) Let J be a rank 3 Jordan algebra with trace T (x) and cubic norm N(x). By [1,
Section 8.v], the space of Zorn matrices with coefficients in J defined by

Z2(J) =
{(

a x
y b

) ∣∣∣ a, b ∈ C
x, y ∈ J

}
,

together with the product • and the involution M 7→M given respectively by(
a x
y b

)
•
(
a′ x′

y′ b′

)
=
(

aa′ + T (x, y′) ax′ + b′x+ y#y′
a′y + by′ + x#x′ bb′ + T (x′, y)

)
and

(
a x
y b

)
=
(
b x
y a

)
(where x#y = (x+ y)#−x#− y# for every x, y ∈ J) is a structurable algebra, meaning
that the triple product [M,N,P ] = (M •N) • P + (P •N) •M − (P •M) •N satisfies
some particular algebraic identities. Moreover, the subspace {M ∈ Z2(J)|M = −M} of
skew-elements is 1-dimensional and spanned by the diagonal matrix, noted by σ, with
scalar diagonal coefficients 1 and -1. Then it can be proved (see formula (1.5) in [2])
that the projectivization of the map M 7→ σ • [M,σ •M,M ] is an involutive cubo-cubic
Cremona transformation of PZ2(J).
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projective line `p: p′ is the unique point on `p such that Cr(ap, bp; p, p′) =
−1(7) .

Proposition 2.3. — For any f ∈ Bir2,2(Pn−1), n > 3, the map

Φf : P2n+1 99K P2n+1

p 7−→ p′

defined above is an involutorial cubo-cubic Cremona transformation.

Proof. — From the fact that for every q ∈ `p \ {ap, bp} the line `p is the
unique secant lines toXf passing through q and from well-known properties
of the cross-ratio it follows that Φf ◦Φf = Id as a rational map so that Φf
is a birational involution of P2n+1.
To prove that Φf is cubo-cubic, one can relate it with the cubic map

considered in Footnote 6 by verifying that the arguments and formulae of
[19], that concern a priori only the semi-simple case, are in fact valid in full
generality.
A more geometrical approach is the following one: for p ∈ P2n+1 general,

the points ap and bp are general points of Xf . In particular, since Xf is
3-covered by twisted cubics, there exist twisted cubics curves included in
Xf and passing through ap and bp. Let Cp be such a curve. Since Cp is a
twisted cubic, it is an OADP variety in its span 〈Cp〉 ' P3 and Φf induces
a Cremona involution ΦCp : 〈Cp〉 99K 〈Cp〉. Since ΦCp is an involution of
bidegree (3, 3) in P3, we deduce that Φf is of the same type, concluding
the proof. �

Since Xf ⊂ P2n+1 is an OADP-variety, the projection πx from a general
tangent space TxX induces a birational map πx : Xf 99K Pn. Thus, for
x1, x2 ∈ Xf general points, the birational map π−1

x1
◦ πx2 : Pn 99K Pn

is easily seen to be a Cremona transformation of Spampintato type linear
equivalent to the map considered in Proposition 2.2, see also [31, Section
3.2.2].

3. An algebraic approach to the description
of Bir2,2(Pn) for n small

Via the JC-correspondence one can classify quadro-quadric Cremona
transformations of Pn−1 by using the classification of n-dimensional rank 3
Jordan algebras. After the pioneering work by Albert and Jacobson (among

(7)Here Cr(·, ·; ·, ·) stands for the cross-ratio of two pairs of points on `p ' P1.
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many others) in the 50’s, we have now a wide range of particularly powerful
algebraic tools to study Jordan algebras. In what follows, we will shortly
present some notions and results to be applied to determine rank 3 Jordan
algebras in low dimension. In particular we shall obtain the complete classi-
fication of rank 3 Jordan algebras of dimension 5, from which we will deduce
a complete list of involutorial normal forms for quadro-quadric Cremona
transformations of P4.

3.1. Some classical notions and tools
in the theory of Jordan algebras

The following material is very classical and is presented in most of the
standard references on Jordan algebras (as [18, 33, 4, 25] for instance).

3.1.1. Nilpotent and nil algebras

Let A be a complex algebra, only assumed to be commutative, but not
necessarily Jordan or with a unity. If A1, A2 are two subsets of A, one sets
A1A2 = A2A1 = {a1a2 | ai ∈ Ai, i = 1, 2 }. Then one defines inductively
Ak for k > 1 by setting A1 = A and Ak = ∪0<p<kA

pAk−p for k > 1. The
algebra A is said to be k-nilpotent if Ak = 0 but Ak−1 6= 0 and it is said
nilpotent if it is k-nilpotent for a certain k > 1. By definition, A is a nil
algebra if it is a k-nil algebra for a certain positive integer k, i.e. if ak = 0
for every a ∈ A.

Now let R be the nontrivial radical of a Jordan algebra or rank ρ. Then
it can be proved that rρ = 0 for every r ∈ R so that R is a k-nil algebra
for a certain k ∈ {2, . . . , ρ}. In fact, much more is true since Albert proved
that R is nilpotent and not only nil, a result not used in the sequel.

3.1.2. Peirce decomposition

By definition, an idempotent of a Jordan algebra J is a nonzero element
u ∈ J verifying u2 = u. For instance, the unity e of J is idempotent.
Let u be a fixed idempotent. One proves that the multiplication Lu by u
satisfies the relation Lu(Lu − Id)(2Lu − Id) = 0, yielding the direct sum
decomposition J = J0(u)⊕J1(u)⊕J 1

2
(u), where Jλ(u) = Ker(Lu−λ Id) =

{v ∈ J | u · v = λ v} for λ ∈ {0, 1, 1/2}.
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Two elements u1, u2 ∈ J are orthogonal if u1 ·u2 = 0. In this case, if both
are idempotents, then their sum u1 +u2 is idempotent too. An idempotent
u is irreducible when it cannot be written u = u1 +u2 where u1, u2 are two
orthogonal idempotents. Since J has finite dimension, one verifies easily
that any idempotent u admits an irreducible decomposition by orthogonal
idempotents, that is can be written as u = u1 + · · ·+ um where u1, . . . , um
are pairwise orthogonal irreducible idempotents (thenm is well-defined and
depends only on u).

Let e = e1 + · · ·+ em be such a decomposition for the unity e of J . Then
for i, j = 1, . . . ,m distinct, one sets Jii = J1(ei) = {x ∈ J | ei ·x = x} and
Jij = J 1

2
(ei) ∩ J 1

2
(ej) = {x ∈ J | ei · x = ej · x = 1

2x}.

Proposition 3.1. — There is a direct decomposition

J =
⊕

16i6j6m
Jij . (3.1)

Moreover, for every distinct i, j, k, ` ∈ {1, . . . ,m}, one has

(Jii)2 ⊂ Jii , Jii · Jij ⊂ Jij , (Jij)2 ⊂ Jii ⊕ Jjj , Jij · Jjk ⊂ Jik (3.2)

and

Jii · Jjj = Jij · Jkk = Jij · Jk` = 0. (3.3)

Finally, setting R = Rad(J), one has

R =
( m⊕
i=1

Rad(Jii)
)
⊕
(
R ∩

(⊕
i<j

Jij
))
. (3.4)

At least theoretically, the material presented in this subsection should
be sufficient to classify rank 3 Jordan algebras of ‘reasonable dimension’.
More rigorously, the notions just introduced above reduce the classification
of Jordan algebras to some problems in linear algebra, which although
simple from a conceptual point of view, can become immediately quite
complicated as soon as the dimension increases.

Let us mention here the reference [40] where H. Wesseler presents the
classification of complex Jordan algebras of dimension less or equal to 6.
The first named author of the present paper has written a text [30] based
on [40] and providing complete proofs of the classification of rank 3 Jordan
algebra of dimension less or equal to 6. Since the report [40] is not well-
known, has not been published (and it will not be published), we decided to
present in the next subsection some details on the classification of Jordan
algebras in dimension 4 and 5, following very closely Wesseler’s approach
and arguments.
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3.1.3. Classification of nil Jordan algebras of low dimension

A Jordan algebra with radical of codimension 1 is isomorphic to the
unitalization of its radical. Then to classify rank 3 Jordan algebras one
needs in particular to know all the nil Jordan algebras of nilindex less or
equal to 3. We recall below the classification of these in low dimension (for
further references on this, the reader can consult [14, 12, 21]).

Proposition 3.2. — A nontrivial nilalgebra of nilindex at most 3 and
of dimension n less or equal to 4 is isomorphic to an algebra with basis
(v1, . . . , vn) in the following table:

Dimension Algebra Non trivial products

2 R2 v2
1 = v2

3 R3
1 v2

1 = v3

3 R3
2 v2

1 = v2
2 = v3

4 R4
1 v2

1 = v3, v1v2 = v4

4 R4
2 v2

1 = v2
2 = v3, v1v2 = v4

4 R4
3 v2

1 = v4

4 R4
4 v2

1 = v2
2 = v4

4 R4
5 v2

1 = v2
2 = v2

3 = v4

Table 1. Classification of nilalgebras of nilindex 6 3 in low dimensions.

If dim(R) = 2, then the conclusion is trivial. Let us prove the above
classification for dimR = 4, letting the remaining cases to the reader. First
of all we recall some useful results of [14]: since R is nilpotent and non
trivial, one has R2 ( R, implying dimR2 ∈ {1, 2, 3} (R2 = 0 must be
excluded since R is not trivial by hypothesis). Assume that dimR2 = 3.
Then there exists r ∈ R such that R = Cr ⊕ R2. Then R2 = Cr2 +
rR2 + (R2)2 ⊂ Cr2 + R3, yielding R2 = Cr2 + R3. This implies R =
Span{r, r2} + R3. By repeating these arguments, one proves that R =
Span{r, . . . , rk−1} + Rk for every k > 1. Since r3 = 0 and since R is
nilpotent, we would deduce R = Span{r, r2} and dim(R) = 2, contrary to
our assumption. Thus necessarily dimR2 ∈ {1, 2}.
Assume first dim(R2) = 2. Let r, r′ ∈ R such that r2and rr′ span R2.

Then (r′)2 = α r2 + β rr′ with α, β ∈ C. By replacing r′ by r′ − βr/2,
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we can suppose (r′)2 = α r2. If α 6= 0, replacing r by r/
√
α, we can also

suppose α = 1. Then one obtains two cases: the algebras R4
1 and R4

2 in the
table above.
Assume now dim(R2) = 1. Let r1 be such that R2 = C r4 where r4 =

(r1)2 and choose r2 and r3 such that (r1, . . . , r4) is a basis of R. The product
on R is determined by the quadratic form ϕ on R′ = Span{r1, r2, r3}
defined by the relation rr′ = ϕ(r, r′)r4 for r, r′ ∈ R′. Note that ϕ is non-
trivial since ϕ(r1) = 1. Moreover, one verifies that isomorphic quadratic
forms on R′ induce isomorphic Jordan algebras. Hence there are only three
possibilities corresponding to the possible values 1, 2 or 3 for the rank of
the quadratic form. The corresponding algebras are denoted by R4

3,R4
4 and

R4
5 in Table 1 above.

3.2. Rank 3 Jordan algebras of dimension 3 and
quadro-quadric Cremona transformations of P2

It is an easy exercise to determine all Jordan algebras of dimension 3
by using the JC-correspondence: a quadro-quadric Cremona transforma-
tion of the projective plane is given by its base locus scheme that is a
non-degenerate 0-dimensional subscheme of length 3 in P2. One sees imme-
diately that there are exactly three such subschemes (up to isomorphisms)
and that they belong to the same irreducible component of Hilb3(P2). Con-
sequently, up to isomorphisms, there are three rank 3 Jordan algebras of
dimension 3.
The classification is collected in the following table:

Algebra dim(R) Semi-simple part Adjoint (x, y, z)# Base locus

C× C× C 0 C× C× C (yz, xz, xy)

C× C[ε]
(ε2) 1 C× C (y2, xy,−xz)

C[ε]
(ε3) 2 C (x2,−xy, y2 − xz)

Table 2. Classification of rank 3 Jordan algebras of dimension three
or equivalently, of quadro-quadric Cremona transformations of P2.
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3.3. Rank 3 Jordan algebras of dimension 4
and quadro-quadric Cremona transformations of P3

The classification of bidegree (2, 2) Cremona transformations in P3 has
been considered recently in [28] and classically by Enriques and Conforto
(see all the references in [28]).
In this section, we give the classification of rank 3 Jordan algebras in

dimension 4. This classification is classical too and for this reason some
cases will be left to the reader. Recent references on the subject are [40, 20,
30]. Concerning the more particular case of associative algebras, one can
consult the classical papers [39, 34] or the more recent one [13] (see also
the references therein).

The classification given by Table 3 below is easy to obtain. Let J be
a rank 3 Jordan algebra of dimension 4. First of all, when R = Rad(J) is
trivial, J is semi-simple, hence it is the direct product of C with J 3

Q,2.
When dim(R) = 1, the semi-simple part Jss of J has dimension 3. It

cannot be of rank 1 (it has dimension 3) or of rank 2: in the latter case, it
would be isomorphic to J 3

Q,2 that does not admit a cubic norm. Hence Jss
has rank 3 and can be assumed to be the direct product of three copies of
C. Clearly R2 = 0 hence the Jordan product is completely determined by
the three complex numbers α1, α2 and α3 such that eir = αir for i = 1, 2, 3,
where (e1, e2, e3) stands for the standard basis of Jss = C×C×C and where
r is a non trivial element of R. It is easy to prove that there exists only
one possibility (up to isomorphisms) for the αi’s, namely α1 = α2 = 1 and
α3 = 0. One easily verifies that the corresponding algebra is isomorphic to
J 4

2 = C× J 3
Q,1.

We now assume dim(R) = 2. In this case the semi-simple part is Jss =
C×C. Let (e1, e2) stands for the image of the standard basis of C2 = Jss in
an embedding Jss ↪→ J . This is a set of pairwise irreducible idempotents.
Let J = J11 ⊕ J12 ⊕ J22 be the associated Peirce decomposition.

If J12 ∩ R = (0) there are two possibilities: either (a) R ⊂ J22, or (b)
R = Rad(J11) ⊕ Rad(J22) with dim Rad(Jii) 6= 0 for i = 1, 2. In any case,
one has J12 = (0) and J is isomorphic to the direct product J11 × J22 by
(3.3). If R ⊂ J22, then J11 is isomorphic to C for dimensional reasons and
J22 is a Jordan algebra of rank 2, dimension 3 with radical of dimension
2. Hence J22 ' J 3

Q,0 and J is isomorphic to the algebra J 4
3 = C × J 3

Q,0.
Case (b) does not occur. Indeed, in this case Jii had dimension 2 and rank
2 for i = 1, 2 so that J ' J11 × J22 would have rank 4, contradicting our
assumption.
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Algebra J dimR Jss Adjoint (x, y, z, t)# Base locus

J 4
1 = C× J 3

Q,2 0 C× J 3
Q,2

(
y2 + z2 + t2 , xy , −xz , −xt

)

J 4
2 = C× J 3

Q,1 1 C× C× C
(
y2 + z2 , xy ,−xz , −xt

)

J 4
3 = C× J 3

Q,0 2 C× C
(
y2 , xy ,−xz ,−xt

)

J 4
4 2 C× C

(
xy , x2 , t2 − yz , xt

) ξ

J 4
5 2 C× C

(
xy, x2, yz, xt

) τ

J 4
6 3 C

(
x2 ,−xy ,−xz , 2yz − xt

) χ

J 4
7 3 C

(
x2 ,−xy ,−xz , y2 − xt

)
η

Table 3. Classification of rank 3 Jordan algebras of dimension four or
equivalently, of quadro-quadric Cremona transformations of P3.

We now treat the case dim(J12∩R) = 1. Let a be such that R∩J12 = Ca.
By (3.4), one can assume that dim Rad(J11) = 1 and dim Rad(J22) = 0.
Let b such that Rad(J11) = Cb. For dimensional reasons, it follows that
J11 = Ce1 ⊕ Cb, J12 = Ca and J22 = Ce2. Since b2 ∈ R ∩ J11 = Cb and
because b3 = 0 (recall that J has rank 3 and that b ∈ Rad(J)) we get b2 = 0.
The structure of J will be completely determined when the two products
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ab and a2 are. According to (3.2), one has ab ∈ J12 · J11 ⊂ J12 = Ca,
hence there exists κ1 ∈ C such that ab = κ1a. Hence Lb(a) = κ1a, thus
κ1 = 0 because the multiplication Lb by b is also nilpotent, as one easily
sees. Finally, one has a2 ∈ R ∩ J2

12 ⊂ R ∩ (J11 ⊕ J22) = Cb so that there
exists κ ∈ C such that a2 = κb. In the coordinate system associated to the
basis (e1, b, a, e2) of J , the Jordan product is given by :

(x1, β, α, x2) · (x′1, β′, α′, x′2)

=
(
x1x
′
1, βx

′
1 + x1β

′ + καα′,
1
2
(
(x1 + x2)α′ + α(x′1 + x′2)

)
, x2x

′
2

)
.

One verifies that the corresponding Jordan algebras have rank 3 and that
for any κ ∈ C, the adjoint is given by

(x1, β, α, x2)# =
(
x1x2, κα

2 − βx2,−αx1, x
2
1
)
.

Up to isomorphisms, there are only two cases to be considered, namely κ =
1 and κ = 0. We denote respectively by J 4

4 and J 4
5 the two corresponding

Jordan algebras.

Finally, when dim(R) = 3 the multiplicative structure of J is completely
determined by that of R. Thus there are two possibilities in this case,
denoted by J 4

6 and J 4
7 in the table above, that correspond respectively to

the unitalizations of the nilalgebras R3
2 and R3

1 of Table 1.

3.4. Quadro-quadric Cremona transformations of P4

and rank 3 Jordan algebras of dimension 5

In this section, we use the same strategy to obtain the main result of this
paper: a complete and explicit classification of quadro-quadric Cremona
transformations of P4.

3.4.1. The three generic quadro-quadric Cremona transformations of P4

In [5], Bruno and Verra give a modern proof of the following result firstly
proved by Semple in [35], providing the classification of the base locus
schemes of general elements of Bir2,2(P4).

Theorem 3.3. — The base locus scheme of a general quadro-quadric
Cremona transformation of P4 is projectively equivalent to one of the sub-
schemes BI ,BII an BIII of P4 where:
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(I) BI is the disjoint union of a smooth quadric surface Q with a point
p lying outside the hyperplane 〈Q〉;

(II) BII is the union of a 2-plane π with two skew lines `1 and `2, each
one intersecting π in one point;

(III) BIII is the scheme theoretic union of a double line L in a hyperplane
H with a smooth conic C tangent to H at the point C ∩ Lred.

Let us recall that the type Tf of a Cremona transformation f : Pn 99K Pn
is (the specification of) the irreducible component of Hilb(Pn) containing
Bf . The proof of the previous result also implies that there are exactly
three types of elements in Bir22(P4), which will be denoted by I, II and
III. Moreover, for any type T ∈ {I, II, III}, two general elements in the
irreducible component of Hilb(P4) containing BT are projectively equiva-
lent. This implies that to T corresponds what we call the generic Cremona
transformation fT ∈ Bir22(P4). Normal forms for fI , fII and fIII as well
as the corresponding multidegrees are given in the table below.

Type T Base locus
BT

Cremona involution
fT (x, y, z, t, u)

Multidegree

I Q t {p} (
y2+z2+t2+u2, xy,−xz,−xt,−xu

) (2, 2, 2)

II π ∪ `1 ∪ `2
(yz , xz , xy , −zt , −yu)

(2, 3, 2)

III L ∪ C
(xy, x2,−yz + u2,−yt,−xu)

(2, 4, 2)

Table 4. The three generic quadro-quadric Cremona transformations
of P4.

The method used by Semple (and later independently by Bruno and
Verra) uses induction on the dimension and can be roughly described as
follows: given a point o ∈ Pm where a given f ∈ Bir2,2(Pm) is an isomor-
phism, one takes a general quadricQ passing through o and belonging to the
homaloidal linear system f−1|OPm(1)|. Then P = f(Q) is a general hyper-
plane through f(o) and if π : Q 99K Pm−1 stands for the restriction to Q of
the linear projection from o, one proves that h = π ◦ (f−1|P ) : P 99K Pm−1

is birational, of bidegree (2, n) with n ∈ {2, 3, 4}, and that its base locus
scheme Bh is the union of f(o) with the intersection of P ' Pm−1 with the
base locus scheme Bf−1 of f−1 (cf. [5, Section 2] for more details).
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As remarked by Bruno and Verra, the base locus Bh of a Cremona map
h obtained by Semple’s construction described above cannot be too special
since it contains f(o) as an isolated point. As we shall see below and as it
was already shown by the classification of Bir2,2(P3), a lot of interesting
examples appear by degenerating the isolated point to an infinitely near
point of the support of the general base locus scheme. Moreover, there is no
general description of quadratic Cremona transformations of degree (2, 3)
and (2, 4) in dimension greater than 5 so that Semple’s method can work
effectively only in dimension at most 4. However, Semple’s approach yields
quite easily that any quadro-quadric Cremona transformations of P4 is a
degeneration of one of the fT ’s in the table above, although it does not say
anything precise on the possible degenerations. In other terms, Semple’s
inductive method does not allow to obtain the complete lists of Cremona
transformations of Pn for n > 4.

On the contrary the classification of 5-dimensional Jordan algebras of
rank 3 is not difficult. By using the material of Section 3.1, it amounts to
elementary but a bit lengthy exercises in linear algebra.

3.4.2. On the classification of rank 3 Jordan algebras of dimension 5

We now classify Jordan algebras J of rank 3 and of dimension 5. We
shall consider the different subcases according to the possible dimension of
the radical R of J .
Let us begin with the case dim(R) = 4. Then J is the unitalization of one

of the five nilalgebras R4
1, . . . ,R4

5 in Table 1 (the case when R2 = 0 would
imply that J has rank 2 hence it has to be excluded). For i = 1, . . . , 5, let
us denote by J 5

i the algebra with R4
i as radical. The J 5

i ’s are associative
algebras of rank 3. Explicit expressions for the adjoints of these algebras
in the coordinate system (x, y, z, t, u) associated to the basis (e, v1, . . . , v4)
are given in Table 6 below.
Let us now consider the case dim(R) = 3. This case is not more com-

plicated than the other ones but requires several pages of elementary ar-
guments of linear algebra that are outlined in [30, Section 5.0.4]. Since
these details do not present any real conceptual interest, we have de-
cided to exclude them and to state the corresponding results. Let us define
J 5

6 , . . . ,J 5
12 as the algebras whose multiplicative tables in a certain basis

denoted by (e1, e2, a, b, d) are given in Table 5 below. The algebras J 5
k ’s

for k ∈ {6, . . . , 12} are rank 3 Jordan algebras with 3-dimensional radicals.
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Moreover, any Jordan algebra of this type is isomorphic to exactly one of
the seven following algebras:

J 5
6 e1 e2 a b d

e1 e1 a 1
2b

1
2d

e2 e2
1
2b

1
2d

a a

b 1
2b

1
2b

d 1
2d

1
2d

J 5
7 e1 e2 a b d

e1 e1 a 1
2b

1
2d

e2 e2
1
2b

1
2d

a a

b 1
2b

1
2b a

d 1
2d

1
2d

J 5
8 e1 e2 a b d

e1 e1 a 1
2b

1
2d

e2 e2
1
2b

1
2d

a a

b 1
2b

1
2b a

d 1
2d

1
2d a

J 5
9 e1 e2 a b d

e1 e1 a 1
2b

1
2d

e2 e2
1
2b

1
2d

a a d

b 1
2b

1
2b d

d 1
2d

1
2d

J 5
10 e1 e2 a b d

e1 e1 a b 1
2d

e2 e2
1
2d

a a

b b

d 1
2d

1
2d

J 5
11 e1 e2 a b d

e1 e1 a b 1
2d

e2 e2
1
2d

a a

b b

d 1
2d

1
2d a

J 5
12 e1 e2 a b d

e1 e1 a b d

e2 e2

a a

b b

d d

Table 5. Multiplication tables for 5-dimensional rank 3 Jordan alge-
bras with 3-dimensional radical (where an empty entry means that the
corresponding product is equal to zero).
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Explicit expressions in the coordinate system (x, y, z, t, u) associated to
the basis (e1, e2, a, b, d) for the adjoints of the seven algebras J 5

6 , . . . ,J 5
12

are given in Table 6 below.

Let us assume now dim(R) = 2. In this case, Jss is a semi-simple Jordan
algebra of dimension 3 and of rank 2 or 3. Since it admits a cubic norm,
it is necessarily of rank 3 and one can assume that Jss = C × C × C. The
standard basis (e1, e2, e3) of Jss = C3 gives an irreducible decomposition
e = e1 + e2 + e3 of the unity by pairwise primitive orthogonal idempotents.
Let us consider the corresponding Peirce decomposition (3.1) and discuss
each case according to the value of

θ = dim
(
R ∩

∑
i<j

Jij
)
∈ {0, 1, 2}.

If θ = 0, then J = ⊕3
i=1Jii, so it follows from Proposition 3.1 that J is the

direct product of the Jii’s. Since at least one of these three Jordan algebras
has dimension > 1, it follows that the rank of J is at least 1 + 1 + 2 = 4,
contradicting the assumption rk(J) = 3. Thus the case when θ = 0 does
not occur.
Assume now that θ = 1. One can suppose that R = Rad(Jii) ⊕ J23

for a certain i ∈ {1, 2, 3}, with Rad(Jii) of dimension 1. If i ∈ {2, 3},
say i = 3, then set J ′ = J22 ⊕ J23 ⊕ J33. It follows from Proposition 3.1
that J ′ is a Jordan algebra since J11 = C e1. Moreover, from J ′ · J11 = 0,
it comes that J = J11 × J ′ for dimensional reasons. Here J ′ is a rank
2 Jordan algebra of dimension 4 with a 2-dimensional radical. It can be
proved that with respect to a suitable basis, the product of J ′ is given by
(y, z, t, u) · (y′, z′, t′, u′) = (yy′ + zz′, yz′ + zy′, yt′ + ty′, yu′ + uy′). More-
over, one has e2 = 1

2 (1, 1, 0, 0) and e3 = 1
2 (1,−1, 0, 0) in the corresponding

coordinates. Then easy computations show that J ′(ej) = Jjj = C ej for
j = 2, 3, contradicting the assumption dim(Rad(J33)) = 1. Thus this case
does not occur.
Let us now assume that i = 1, i.e. that dim Rad(Jii) = 1. As above, one

proves that J = J11 × J ′, but now with dim J11 = dim J ′ = 2. This would
imply that J has rank 2 + 2 = 4, excluding also this case.

We now treat the case θ = 2. Then one has Rad(Jii) = 0 for i = 1, 2, 3
so that R = J12 ⊕ J13 ⊕ J23. Assume first that no Jij ’s (for i < j) has
dimension 2. Thus one can assume that J23 = 0 and that J12 and J13
are 1-dimensional. Then there exist a, b such that J12 = C a, J13 = C b.
Since R = J12 ⊕ J13, using Proposition 3.1, one deduces easily that the
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multiplication table of J is the following:

e1 e2 e3 a b

e1 e1
1
2a

1
2b

e2 e2
1
2a

e3 e3
1
2b

a 1
2a

1
2a

b 1
2b

1
2b

This is the multiplication table of a rank 3 Jordan algebra that will be
denoted by J 5

13. The expression of the adjoint in the coordinate system
associated to the basis (e1, e2, e3, a, b) of J 5

13 is given in Table 6.
Finally, assume that one of the spaces in the decomposition R = J12 ⊕

J13 ⊕ J23 (say J23) has dimension 2. Then R = J23, J1j = 0 for j = 2, 3,
thus J11 = C e1. As above, one proves that J is isomorphic to the direct
product J11×J ′. Since J has rank 3, J ′ has rank 2 and R = J23 = Rad(J ′)
is 2-dimensional. Thus J is isomorphic to the Jordan algebra J 5

14 = C ×
J 4
Q,1. The associated Jordan adjoint (in standard coordinates) is given in

Table 6.
Let us now consider the case dim(R) = 1. In this case, Jss has rank 2 or 3.

Moreover, since it admits a non-trivial cubic norm, it cannot be isomorphic
to J 4

Q,3 (which does not admit any) hence it is necessarily of rank 3. It
follows that one can assume that Jss is the direct product C × (C ⊕W )
where C⊕W = J 3

Q,2. Let a be a non-trivial element of R. Since a3 = 0 and
a2 ∈ R2 ⊂ R = C a, it follows that a2 = 0. SetW = C2 and let (x, y, z, t, u)
be the usual system of coordinates on J = (C × (C ⊕ W )) ⊕ C a (these
coordinates are such that (0, y, z, t, 0) · (0, ỹ, z̃, t̃, 0) = (0, yỹ + zz̃ + tt̃, yz̃ +
zỹ, yt̃ + tỹ, 0) for every y, ỹ, z, z̃, t, t̃ ∈ C). Then e1 = (1, 0, 0, 0, 0), e2 =
1
2 (0, 1, 1, 0, 0) and e3 = 1

2 (0, 1,−1, 0, 0) are pairwise orthogonal primitive
idempotents of J such that e = e1 + e2 + e3.

The direct sum J ′ = ⊕3
i,j=2Jij is a subalgebra of J . If a ∈ J ′, one proves

that J is isomorphic to the direct product of J11 with J ′. If dim J11 > 1, we
would have 3 = rk(J) = rk(J11)+rk(J ′) > 2+2 = 4, a contradiction. Hence
J11 ' C and J ′ is a rank 2 Jordan of dimension 4 with a 1-dimensional
radical. Hence J is isomorphic to the Jordan algebra J 5

15 = C × J 4
Q,2 and

there is then no difficulty to get an explicit expression for the adjoint in
some coordinates (see Table 6 below).
Suppose now that a ∈ J11 ⊕ J12 ⊕ J13. The case a ∈ J11 does not occur

(it would imply that J is isomorphic to J11 × J ′ hence we would have
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rk(J) = rk(J11) + rk(J ′) > 2 + 2, a contradiction), hence a ∈ J12 ⊕ J13.
By exchanging e2 and e3, if necessary, one can assume that a ∈ J12. Set
ẽ = (0, 0, 0, 1, 0) ∈ Jss = (C× (C⊕W )). One verifies that ẽ ∈ J23 and that
ẽ2 = e2 + e3. Moreover, since ẽ · a ∈ J23 · J12 ⊂ J13 and since J13 = 0 (for
dimensional reasons), it follows that ẽ · a = 0. From this one deduces that
the multiplication table of J in the basis (e1, e2, e3, ẽ, a) is the following:

e1 e2 e3 ẽ a

e1 e1
1
2a

e2 e2
1
2 ẽ

1
2a

e3 e3
1
2 ẽ

ẽ 1
2 ẽ

1
2 ẽ e2 + e3

a 1
2a

1
2a

By direct computations, one verifies that the multiplicative product de-
fined by this table does not satisfy the Jordan identity. Thus the case when
a ∈ J11 ⊕ J12 ⊕ J13 does not occur.
Finally, when dimR = 0, J is semi-simple hence is isomorphic to the

direct product J 5
16 = C× J 4

Q,3.

We have thus finally obtained the classification of rank 3 Jordan algebras
of dimension 5:

Theorem 3.4. — A rank 3 Jordan algebra of dimension 5 is isomorphic
to exactly one of the sixteen algebras J 5

k ’s described above.

3.4.3. Classification of quadro-quadric Cremona transformations of P4

Using the JC-equivalence, one deduces from the previous result the
complete classification of quadro-quadric Cremona transformations of P4.
Furthermore, one verifies that the Hilbert polynomials of the base locus
schemes BI ,BII and BIII are respectively

hI = P0−P1 +2P2 , hII = −2P0 +2P1 +P2 and hIII = −5P0 +5P1.

In particular, these are distinct, thus the type of a quadro-quadric Cre-
mona transformation of P4 given explicitly can be determined easily by
computing the Hilbert polynomial of its base locus scheme (using the soft-
ware MacCaulay2 [15] for instance). Similarly, there is no difficulty in de-
termining the multidegree of such a Cremona transformation f : the in-
tersection of two distinct quadrics in f−1|OP4(1)| is the scheme theoretic
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union of Bf with another scheme whose degree is the integer k such that
mdeg(f) = (2, k, 2).

Theorem 3.5. — A quadro-quadric Cremona transformation of P4 is
linearly equivalent to the projectivization of one of the sixteen (pairwise
non linearly equivalent) Jordan involutions in the following table:

Algebra dimR Jordan involution (x, y, z, t, u)# Type Multidegree

J 5
1 4 (x2 , −xy , −xz , y2 − xt , 2yz − xu) II (2, 3, 2)
J 5

2 4 (x2 , −xy , −xz , y2 + z2 − xt , 2yz − xu) III (2, 4, 2)
J 5

3 4 (x2 , −xy , −xz , −xt , y2 − xu) I (2, 2, 2)
J 5

4 4 (x2 , −xy , −xz , −xt , y2 + z2 − xu) I (2, 2, 2)
J 5

5 4 (x2 , −xy , −xz , −xt , y2 + z2 + t2 − xu) I (2, 2, 2)

J 5
6 3 (xy , x2 , −yz , −xt , −xu) I (2, 2, 2)
J 5

7 3 (xy , x2 , t2 − yz , −xt , −xu) I (2, 2, 2)
J 5

8 3 (xy , x2 , t2 + u2 − yz , −xt , −xu) I (2, 2, 2)
J 5

9 3 (xy , x2 , −yz , −xt , 2zt− xu) II (2, 3, 2)
J 5

10 3 (xy , x2 , −yz , −yt , −xu) II (2, 3, 2)
J 5

11 3 (xy , x2 , u2 − yz , −yt , −xu) III (2, 4, 2)
J 5

12 3 (xy , x2 , −yz , −yt , −yu) I (2, 2, 2)

J 5
13 2 (yz , xz , xy , −zt , −yu) II (2, 3, 2)
J 5

14 2 (y2 + z2 , xy , −xz , −xt , −xu) I (2, 2, 2)

J 5
15 1 (y2 + z2 + t2 , xy , −xz , −xt , −xu) I (2, 2, 2)

J 5
16 0 (y2 + z2 + t2 + u2 , xy , −xz , −xt , −xu) I (2, 2, 2)

Table 6. Classification of quadro-quadric Cremona transformations of P4.

The classification above is completely explicit but does not say much
about the geometry of the corresponding Cremona transformations. In the
next subsections, for each Jordan involution fJ 5

k
in this table, we describe as

geometrically (and so little schematically) as possible its base locus scheme
B(J 5

k ) as well as the linear system of quadric hypersurfaces∣∣IB(J 5
k

)(2)
∣∣ = f−1

J 5
k

∣∣OP4(1)
∣∣.

3.4.4. Tables of quadro-quadric Cremona transformations of P4

We will deal with the three types I, II and III separately. The results
are collected in some tables below according to their type in a similar way
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to the classification tables of Cremona transformations of type (2, d) of P3

obtained in [28]. When possible, we also offer graphic representations of
the associated base locus schemes. These drawings could be helpful to give
a better geometrical understanding of various cases, especially the most
degenerated ones.

Some Cremona maps of type II or III are rather complicated since their
base locus schemes have a non-reduced irreducible component whose
schematic structure is more subtle than for type I. Before presenting the
aforementioned tables of Cremona transformations, we introduce some ter-
minology in order to deal with some non-reduced schemes of dimension 1.

− Double structures on a line in P3. Let L be a double structure sup-
ported on a line ` = Lred ⊂ P3 (see [29, Section 1]): the associated ideal
sheaf IL verifies (I`)2 ⊂ IL ⊂ I` and is such that the sheaf JL = I`/IL

is invertible. Thus there is a surjection I`/(I`)2 → JL to which corre-
sponds a unique section σL ∈ H0(`,N`/P3). It defines a line bundle on
` ' P1 whose degree δ(L ) > 0 is projectively attached to L ⊂ P3. In
fact, it is the unique invariant of such a scheme since setting δ = δ(L ) for
simplicity, one knows (cf. [11, page 136] for instance) that L is projectively
isomorphic to

Lδ = Proj
(

C[a, b, d, c]
(a2, ab, b2, adδ − bcδ)

)
⊂ P3.

One can describe geometrically Lδ as the union of the rational family
of punctual schemes {τx}x∈`, all isomorphic to τ ⊂ P3 and such that the
projectivized tangent space Txτx is normal to ` for every x. As mentioned in
[11], L can be thought as ` ‘plus a projective line L infinitely close to it’, the
integer δ specifying how fast L ‘twists along `’ in P3. When δ = 0, there is no
twisting at all so that, using the terminology introduced in Section 1, L0 is
nothing but a 2-multiple line in a 2-plane, i.e. L0 ' Proj(C[a, b, c]/(a2)) ⊂
P2. This contrasts with the general case since 〈Lδ〉 = P3 for every positive
integer δ.

In what follows, we will consider only the schemes Lδ for δ = 0, 1,
linearly embedded in P4. According to the above discussion, it is reasonable
to represent these two schemes as: a line plus another one glued along the
first, in a rectilinear way for δ = 0; twisted one time when δ = 1:
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L0

〈L
0
〉

Pictural representation of L0⊂P4

(the 2-plane 〈L0〉
is pictured in yellow)

L1

〈L1
〉

Pictural representation of L1⊂P4

(the hyperplane 〈L1〉
is pictured in pink)

− The non-reduced degenerate rational quartic curve L4 ⊂ P4. Let

L4 = Proj
(
C[x, y, z, t, u]/(x2 , xy , xz , y2 − xt , 2yz − xu, z2)

)
⊂ P4.

This subscheme of P4 is irreducible and has dimension 1. It is an arith-
metically Cohen-Macaulay (briefly ACM) non reduced curve of degree 4
having arithmetic genus 0 and supported on the line `= L 4

red =V (x, y, z)⊂
P4. For any point p ∈ `, the projectivized tangent space TpL4 is the coor-
dinate hyperplane H = V (x). The (schematic) intersection L4 ∩H is the
scheme defined by the homogeneous ideal (x, y2, yz, z2): it is a double-line
in H. The residual intersection of H with L4 is the reduced line `.

A natural question is to wonder if L4 is a degeneration of a rational
normal quartic curve v4(P1) ⊂ P4, which has the same Hilbert polynomial.
This should follow from [24, Proposition 2.2] but the algorithm presented
there for producing a smoothing of the scheme L4 does not work because
in this case a non flat family appears(8) . Thus as far as we know, it is still
unknown if L4 belongs to the irreducible component of the Hilbert scheme
containing v4(P1) or not. This shows how subtle the analysis of the most
degenerated examples can be.

(8)Actually, the deformation C given in part 2) of the proof of [24, Proposition 2.2] is
even not equidimensional in general.
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In the next pages, the reader will find the aforementioned tables of
quadro-quadric Cremona transformations of P4 as well as the corresponding
graphic representations of the associated base locus schemes.
We begin by considering the quadro-quadric Cremona transformations

of type I. The descriptions of the linear systems in Table 7 are complete
and very similar to the ones in ‘Tableau 1’ of [28](9) .

Then we consider the case of quadro-quadric Cremona transformations
of type II. All the associated linear systems of quadrics are described in
Table 8, with the exception of |IB(J 5

1 )| whose description is too long to
be put in the table. In order to describe it geometrically, let us introduce
the following terminology: if C is a curve included in the smooth locus
of a surface S ⊂ P4, we will say that a hypersurface H ⊂ P4 osculates
normally S along C if any generic subscheme η ⊂ S normal to C is also a
subscheme of H. More concretely, this means that for c ∈ C generic and
any regular germ of curve µ : (C, 0) → (S, c) whose image is transverse to
C, the composition h ◦ µ has valuation at least 2 at 0 if h is a generator of
OH,c.
Now let ` be a fixed line of the ruling of a rational normal scroll S = S1,2

in P4 and denote by π the 2-plane spanned by ` and the directrix line of
S. Then up to projective equivalence,

the homaloidal linear system |IB(J 5
1 )| is formed by the quadric

hypersurfaces in P4 containing the 2-plane π and osculating nor-
mally the rational normal scroll S along `.

(3.5)

This claim can be verified by easy direct computations(10) .
The base locus schemes of type II are pictured in Figure 6, at the

exception of B(J 5
1 ): we have not been able to figure a way to represent this

scheme.

(9)Note however that the description of the linear system of type tan[3](//) is not correct
in [28].
(10)To recover exactly the linear system 〈x2, xy, xz, y2 − xt, 2yz − xu, z2〉 appearing in
Table 8, one has to take S = V (y2 − xt, 2zt− yu, 2yz − xu) and ` = V (x, y, z).
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Figure 5. Graphic representations of the base locus schemes of elemen-
tary quadro-quadric Cremona transformations of P4 (these base loci
are pictured in yellow and the hyperplanes spanned by the quadric
surface components are pictured in pale pink).
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The classification shows that up to linear equivalence, there are only two
quadro-quadric Cremona transformations of P4 of type III. The generic
one is well-understood: the associated algebra is J 5

11, the adjoint reads
(x, y, z, t, u)# = (xy, x2, u2 − yz,−yt,−xu) in a suitable system of coor-
dinates, the primary decomposition of the associated ideal is IB(J 5

11) =
(x, t, u2 − yz) ∩ (y, x2, xu, u2), the base locus scheme B(J 5

11) is the scheme
BIII of Theorem 3.3 and the associated linear system is formed by hyper-
quadrics containing C and tangent to the line Lred at the intersection locus
C ∩ 〈L〉, which is just one point.
In contrast we have almost nothing to say on the quadro-quadric Cre-

mona transformations of P4 associated to the algebra J 5
2 : its base locus

scheme B(J 5
2 ) is a degree 5 multiplicity 2 scheme of arithmetic genus 1

supported on the line V (x, y, z). This case appears to be the most degen-
erate and the most mysterious one.
Note however than if for λ ∈ C, one defines

fλ : P4 99K P4 , [x : y : z : y : u] 7→ [x2 : −xy : −xz : y2+λz2−xt : 2yz−xu] ,

one obtains an algebraic 1-dimensional family of quadro-quadric Cremona
involutions of P4 such that f0 = fJ 5

1
and with fλ linearly equivalent to

f1 = fJ 5
2
for every λ 6= 0. Thus fJ 5

1
naturally appears as a degeneration of

fJ 5
2
in contrast with what is going on at the schematic level. Indeed, the

associated family of base locus schemes {Bfλ}λ∈C is not flat (it is neither
equidimensional since dimBf0 = 2 whereas dimBfλ = 1 for every λ 6= 0).

The preceding remarks show that the study of the ‘moduli space of
quadro-quadric Cremona transformations of Pn’ is certainly quite difficult
from a scheme theoretic perspective as soon as n increases.

Let us conclude this section with a general remark suggested by the
referee: looking at Table 3, Table 6 and Table 10 below, one realizes
that the Cremona transformations corresponding to the maximal dimension
of R are exactly those coming from a quadratic polynomial automorphism
of the affine space (given for all cases as the complement of the hyperplane
x = 0, that is by the chart x = 1 ). This is not a coincidence and there
is a conceptual reason why this holds true (in any dimension). Indeed, let
f : Pn 99K Pn be the projectivization of the adjoint map of a Jordan algebra
J of rank 3. If N stands for the support of the (possibly non-irreducible or
non-reduced) cubic hypersurface cut out by the cubic norm of J , then, by
restriction, f induces an isomorphism Pn \N → Pn \N . And Pn \N is an
affine space if and only if N is a hyperplane which is equivalent to the fact
that the radical of J is of codimension 1.
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4. Quadro-quadric Cremona transformations of P5

In [5], Bruno and Verra apply Semple’s approach (see Section 3.4.1) to
the case of P5. Using the description of quadric Cremona transformations
of P4 given by Semple in [35], they prove the following result:
Theorem 4.1. — The base locus scheme of a quadro-quadric Cremona

transformation of P5 belongs to the irreducible components of Hilb(P5)
containing one of the subschemes BI , . . . ,BIV of P5 where:

(I) BI is the disjoint union of a smooth quadric threefold Q with a
point p lying outside the hyperplane 〈Q〉;

(II) BII is the union Π ∪ π ∪ ` of a 3-plane Π with a 2-plane π and a
line ` with relative positions as follows: π intersects Π along a line,
` is disjoint from π and meets Π at one point;

(III) BIII is the schematic union of a double plane P in a hyperplane H
with a smooth conic C that is tangent to H at C ∩Pred that is one
point;

(IV) BIV is the Veronese surface v2(P2) ⊂ P5.
The preceding result implies in particular that there are exactly four

types for elements of Bir22(P5), that will be denoted by I, II, III and IV .
As in dimension four, to these types correspond four generic quadro-quadric
Cremona transformations of P5. Explicit involutive normal forms for these
as well as the corresponding multidegrees are given in the following table:

Type T Base locus
BT

Generic Cremona transformation fT Multidegree

I Q t {p}
(
y2 + z2 + t2 + u2 + v2, xy,−xz,−xt,−xu,−xv

)
(2, 2, 2, 2)

II Π ∪ π ∪ ` (zy, xz, xy,−tz,−uz,−vy) (2, 3, 3, 2)
III P ∪ C (xy, x2,−yz + v2,−yt,−yu,−xv) (2, 4, 4, 2)
IV v2(P2)

(
yz − v2, xz − u2, xy − t2, uv − zt, tv − uy, tu− xv

)
(2, 4, 4, 2)

Table 9. The four generic quadro-quadric Cremona transformations of P5.
A complete classification (up to isomorphisms) of rank 3 Jordan algebras

of dimension 6 is obtained in [30] (following the more general classification
done by Wesseler in [40]). One deduces from it the complete classification
of quadro-quadric Cremona transformations of P5.
Theorem 4.2. — A quadro-quadric Cremona transformation of P5 is

linearly equivalent to one of the twenty nine Jordan involutions listed in
Table 10 below.

A careful and systematic study of the Cremona maps in Table 10 will
be considered eventually elsewhere.

ANNALES DE L’INSTITUT FOURIER



QUADRO-QUADRIC CREMONA TRANSFORMATIONS IN LOW DIMENSIONS109

Algebra Jordan adjoint (x, y, z, t, u, v)# Type Multidegree dim(R)
Js

(
yz − v2, xz − u2, xy − t2, uv − zt, tv − uy, tu− xv

)
IV (2, 4, 4, 2) 0

Jss
(
y2 + z2 + t2 + u2 + v2, xy,−xz,−xt,−xu,−xv

)
I (2, 2, 2, 2) 0

C× J 5
Q,4

(
y2 + z2 + t2 + u2, xy,−xz,−xt,−xu,−xv

)
I (2, 2, 2, 2) 1

C× J 5
Q,3

(
y2 + z2 + t2, xy,−xz,−xt,−xu,−xv

)
I (2, 2, 2, 2) 2

J92
(
yz − t2, xz, xy,−xt, tv − uz, tu− yv

)
IV (2, 4, 4, 2) 2

J100 (yz, xz, xy,−xt,−xu,−xv) I (2, 2, 2, 2) 3
J101 (yz, xz, xy,−zt,−zu,−yv) II (2, 3, 3, 2) 3
J 0

102 (yz, xz, xy,−zt,−yu,−xv) IV (2, 4, 4, 2) 3
J 1

102 (yz, xz, xy,−zt+ 2uv,−yu,−xv) IV (2, 4, 4, 2) 3
J 000

113 (xy, x2,−yz,−ty,−yu,−xv) II (2, 3, 3, 2) 4
J 100

100 (xy, x2,−yz + v2,−yt,−yu,−xv) III (2, 4, 4, 2) 4
J a122

(
xy, x2,−yz,−ty,−xu,−xv

)
II (2, 3, 3, 2) 4

J b122
(
xy, x2,−yz + u2,−yt,−xu,−xv

)
IV (2, 4, 4, 2) 4

J c122
(
xy, x2,−yz + 2uv,−yt,−xu,−xv

)
IV (2, 4, 4, 2) 4

J d122
(
xy, x2,−yz + u2,−yt+ v2,−xu,−xv

)
IV (2, 4, 4, 2) 4

J e122
(
xy, x2,−yz + u2,−yt+ 2uv,−xu,−xv

)
IV (2, 4, 4, 2) 4

J 0
124 (xy, x2,−yz,−yt,−xu,−xv + 2tu) IV (2, 4, 4, 2) 4
J 1

124 (xy, x2,−yz + u2,−yt,−xu,−xv + 2tu) IV (2, 4, 4, 2) 4
J 0

126 (xy, x2,−yz,−yt,−xu,−xv + 2zu+ 2tu) IV (2, 4, 4, 2) 4
J 1

126 (xy, x2,−yz + u2,−yt− u2,−xu,−xv + 2zu+ 2tu) IV (2, 4, 4, 2) 4
J (0)

140 (xy, x2,−yz,−xt,−xu,−xv) I (2, 2, 2, 2) 4
J (1)

140 (xy, x2,−yz + t2,−xt,−xu,−xv) I (2, 2, 2, 2) 4
J (2)

140 (xy, x2,−yz + t2 + u2,−xt,−xu,−xv) I (2, 2, 2, 2) 4
J (3)

140 (xy, x2,−yz + +t2 + u2 + v2,−xt,−xu,−xv) I (2, 2, 2, 2) 4
J143 (xy, x2,−yz,−xt,−xu,−xv + 2zt) II (2, 3, 3, 2) 4
J aES

(
x2,−xy,−xz,−xt+ 2yu− zv,−xu+ z2,−xv + 2yz

)
IV (2, 4, 4, 2) 5

J bES
(
x2,−xy,−xz,−xt+ 2yz,−xu+ y2,−xv + z2) IV (2, 4, 4, 2) 5

J c,(−1)
ES

(
x2,−xy,−xz,−xt,−xu− 2yz + 2zt,−xv − y2 + t2

)
II (2, 3, 3, 2) 5

J c,(0)
ES

(
x2,−xy,−xz,−xt,−xu+ 2zt,−xv + t2

)
II (2, 3, 3, 2) 5

J c,(d)
ES

(
x2,−xy,−xz,−xt,−xu+ 2zt,−xv + z2 + t2

)
IV (2, 4, 4, 2) 5

J c,(1)
ES

(
x2,−xy,−xz,−xt,−xu+ y2 + 2zt,−xv + t2

)
IV (2, 4, 4, 2) 5

J c,(2)
ES

(
x2,−xy,−xz,−xt,−xu+ 2zt,−xv + y2 + t2

)
IV (2, 4, 4, 2) 5

J c,(3)
ES

(
x2,−xy,−xz,−xt,−xu+ 2yz + 2zt,−xv + t2

)
IV (2, 4, 4, 2) 5

J c,(4)
ES

(
x2,−xy,−xz,−xt,−xu+ 2zt,−xv + 2yz + t2

)
IV (2, 4, 4, 2) 5

J c,(5)
ES

(
x2,−xy,−xz,−xt,−xu+ y2 + 2zt,−xv + z2 + t2

)
IV (2, 4, 4, 2) 5

J d,000
ES

(
x2,−xy,−xz,−xt,−xu,−xv + y2) I (2, 2, 2, 2) 5

J d,100
ES

(
x2,−xy,−xz,−xt,−xu,−xv + y2 + z2) I (2, 2, 2, 2) 5

J d,110
ES

(
x2,−xy,−xz,−xt,−xu,−xv + y2 + z2 + t2

)
I (2, 2, 2, 2) 5

J d,111
ES

(
x2,−xy,−xz,−xt,−xu,−xv + y2 + z2 + t2 + u2) I (2, 2, 2, 2) 5

Table 10. Involutive normal forms for quadro-quadric Cremona trans-
formations of P5 (dim(R) stands for the dimension of the radical of
the corresponding Jordan algebra, this one being labelled with the
notation used in [30]).
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