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METRIC COSET SCHEMES REVISITED

by P. CAMION, B. COURTEAU®™ and A. MONTPETIT

1. Introduction.

Let the finite set X be endowed with the structure of an Abelian
group and let (X,R), R = {Ri}ocicn be an association scheme such
that, to the partition {R;}oci<n of X x X corresponds a partition {Xy =
{0}, X1,...,X,} of X so that (z,y) € R; if and only if z —y € X;. We then
call (X, R) an Abelian scheme. Notice that what we here call an Abelian
scheme corresponds to a special instance of what is usually named a Schur-
ring. Let Y be a subgroup of X that is called an additive code of (X, R).
P. Delsarte introduces a partition R on the set X x X, where X = X/Y,
with the help of what he calls the restricted distribution matrix of Y’
in (X, R). Let us call in general (X, R) a coset configuration. He then
characterizes the coset configurations (X, R) which are association schemes,
more precisely Abelian schemes, then called coset schemes.

As pointed out by P. Solé [38], Delsarte observed [13] that in the linear
case the coset configuration of a completely regular code is a P-polynomial
association scheme whose dual is a scheme on the words of the dual code
called the distance scheme [5] and in the unrestricted case an s’-partition
design is obtained [8]. We here confine ourselves to studying additive
completely regular codes in Abelian groups in relation with partition
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designs. In this way we obtain a construction of metric Abelian schemes
and an algorithm to compute their intersection matrices.

1.1. Some references.

Theorem 3.5 of Godsil and Martin [18] generalizes both Delsarte’s
result and Brouwer et al. [3, Theorem 11.1.6] of which an application is
the characterization of metric coset schemes. The paper of Godsil and
Martin brings a unifying viewpoint on the whole subject.

We here confine ourselves to particular instances of those general
results. We recall all needed basic facts and we give elementary proofs
providing tools for computations. We emphazise through examples that
completely regular codes (Definition 2.12) in metric Abelian schemes is not
all we need to characterize metric coset schemes. In such examples the coset
scheme of an additive code which is not completely regular can be made
metric for a suitable ordering of its relations.

Finally we introduce a new construction of Abelian metric schemes
which are obtained as coset schemes.

The notion of partition design is taken from [10] [8] but the same
notion is known as coherent partition [20] or equitable partition [16] [37].
Equitable partitions of graphs are the same thing as the graph divisors
introduced by Sachs and his co-workers, and an exposition of their point
of view appears in [33, Chap. 4].

The concept of completely regular codes in those particular distance-
regular graphs which are known as Hamming graphs, was introduced by
N.V. Semakov, V.A. Zinoviev and C.V. Zaitsev in [34] where uniformly
packed codes, which form a particular class of completely regular codes were
not only introduced but deeply investigated. In [21] the authors show that
completely regular codes share properties of perfect codes. Those concepts
need that of distance distribution matrix which is a particular case of that of
outer distribution matrix of a subset Y, called a code, in an association
scheme (X, R) (which is not necessarily metric) introduced by Delsarte [13].
The combinatorial matrix is taken from [10] and has been studied in [10] [8]
and [9] in the case where (X, R) is a Hamming scheme. All these concepts
have been generalized by Montpetit in [28] [29] for regular graphs which
include the particular case of distance-regular graphs (see also [3]).

We assume in this paper that all basic concepts of association schemes
are known to the reader. If the reader needs the necessary notions about
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association schemes, he may find those in [13] or [1] or [7]. An associ-
ation scheme (X,R) is defined by a partition of X x X into relations
Ro, Ry, ..., R, that satisfy a series of conditions. We recall those condi-
tions.

Let X be a finite set and let R = {Ry, Ry, ..., R,} be a family of n+1
relations on X; in other words, R; is a subset of X x X, 71 =0,...,n. The
point y € X is said to be the i-th associate of the point z if the couple
(z,y) belongs to R;. The configuration (X, R) is called a commutative
association scheme with n classes if the following conditions are
satisfied:

A;  The diagonal relation {(z,z)|z € X} is the relation Ry of R.
Ao The family R forms a partition of X x X i.e.,
XXX:R()U...URn, RiijIQ lfl#]

A3 The reciprocal relation RY of R;, RT = {(z,v)|(y,x) € R;} also
belongs to R, = 0,...,n. We thus have R;f" = R;, for some
i €{0,1,...,n}.

Ay For any triple of integers ¢,5,k € {0,1,...,n} the number of z € X

such that (z,z) € R; and (2,y) € R; does not depend on the choice
of (x,y) in Rk. This constant number is denoted by p;.

As  We have that pf; = p¥; for all 4, j, k.

The adjacency matrix of R; is denoted by D;, ¢ = 0,...,n. Note
that the set of indices is not always explicitly given when it is obvious, for

instance when it is the set {0,1,...,n}. The relations
n
(1) DiD; = ZPZ‘Dk
k=0

yield the integers pfj which are the intersection numbers of the scheme.
In this notation & is a superscript used to avoid three subscripts.

DEeFINITION 1.1. — The intersection matrix relative to R; is the
matrix [Li(k,j) = p;].

Let us tell a further word on the general outer distribution matrix B
of a subset Y of X in (X, R). All following notions have been introduced
in [13] [14].

DEerINITION 1.2. — The outer distribution matrix of a subset Y in
(X, R) in an association scheme (X, R) is the matrix B = [B(z, j)] whose



832 P. CAMION, B. COURTEAU, A. MONTPETIT
(z,4)-entry is

Bj(z) = B(z,j) =|RjN(zxY)|,z€ X, i=0,...,n.
Thus Bj(z) is the number of j-th associates of z in Y.

DEeFINITION 1.3. — A code Y in (X, R) is regular when the row-
vector B(z) = [Bo(z), ..., Bn(z)] is independent of the choice of z in Y.

DEFINITION 1.4. — Let s’ + 1 be the rank of the outer distribution
matrix (or of its combinatorial matrix, Definition 2.11, if the scheme is
metric) of a code Y. Then the external degree of Y is s'.

The reason for that denomination is as follows.

ProposiTioN 1.1 [13]. — If X is endowed with the structure of an
Abelian group and if a code Y is a subgroup of X, then the external degree
s’ of the code Y is the number of nonzero weights of its dual Y° (Definition
2.13).

DEFINITION 1.5. — Let t' + 1 be the number of distinct rows of the
outer distribution matrix (or combinatorial matrix, Definition 2.11, if the
scheme is metric ) of a code Y. Then the combinatorial number of Y
ist.

An analog of Lloyd’s theorem for completely regular codes is obtained
in [21]. In Section 4 of [28] properties of perfect codes in t-regular graphs,
(which were introduced by A. Neumaier [31]) including Lloyd’s theorem
are derived from properties of completely regular codes in t-regular graphs.
See also [32]. Finally, weakly metric association schemes are introduced in
[38] where the author obtains a Lloyd theorem in those non symmetric
association schemes.

We have included several references which are not quoted in the text
but are however closely related to the topic.

1.2. Our concern.

Our investigation concerns codes in the theory of association
schemes, also called Algebraic Combinatorics [1]. Let (X,R), R =
{R;}o<i<n be the (metric or P-polynomial) association scheme of a distance-
regular graph (X,T'). A subset Y of vertices of (X,I') is called a code of
(X,T).
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Let the set X be endowed with the structure of an Abelian group
and let (X, R) have the property that, to the partition {R; }oci<n of X x X
corresponds a partition {X;}oci<n of X so that z and y are at distance ¢
apart in (X,T") (or (z,y) € R;) if and only if z —y € X;. In particular (z,y)
is an edge in (X,T') when z — y € X;. We say that Y is an additive code
if it is a subgroup of X. We then consider the graph (X/Y, A) on the set of
classes of the quotient group X/Y defined by: (Z,§) is an edge if and only
if (z — ) N X1 # @. We here focus on the following theorem, consequence
of Theorem 11.1.6 in Brouwer et al. [3]):

A necessary and sufficient condition for an additive code Y
of a distance-regular graph (X,T') to be completely regular is that
(X/Y,A) is a distance-regular graph.

We reconsider its proof in giving one’s mind to work out tools for
constructing instances of distance-regular graphs.

Therefore we give two distinct proofs of that result essentially based
upon the fact that the distance partition of a completely regular code
is a partition design of which the associate matrix, in the case under
consideration is essentially the first intersection matrix of a metric scheme.
The striking fact is that an additive code can exist which admits a partition
design of which the associate matrix is an intersection matrix of the metric
coset scheme of that code (actually a Hamming scheme), but not the first
(and that code is thus not completely regular).

2. Partition designs in metric schemes
and coset configurations in Abelian schemes.

2.1. Distance-regular graphs.

Let R = {Ro,Ry,...,Ry} be a family of n + 1 relations R; on X
such that (X, R) is a symmetric association scheme. Thus (X, R) is an
association scheme in which every relation R; is symmetric, ¢ = 0,...,n.
From now on, when the range of the index i clearly is {0,...,n}, we will
omit: “¢ = 0,...,n”. Relation R; defines an undirected graph (X,I') on X.
A path of length j fom z to y is a sequence of vertices o = z,%1,...,2; =y
such that (z;,z;+1) is an edge of I'. Two vertices z and y are at distance
d(z,y) = 1 apart if the shortest path between them in (X,T") has 7 edges.
The mapping (z,y) — d(z,y) is known to satisfy the axioms of a distance.
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DEFINITION 2.1. — An undirected graph (X,T) is distance-regular
if and only if there exists an association scheme (X, R) such that

(:B’y) € Rz had d(x,y) =1,
where d() is the distance relation in (X,T').

In such a situation, then the associaton scheme (X, R) is said to be
metric or P-polynomial [13, Section 4.2]. Properties of distance-regular
graphs and P-polynomial association scheme are discussed in [1, Chapter 3].

Remark 2.1. — First notice that a distance-regular graph is con-
nected. Indeed one of the conditions for (X, R) to be an association scheme
[13] is that R = {Ry, Ry, ..., R} is a partition of X x X.

It actually is enough for a connected undirected graph of diameter
n to be distance-regular that for any triple of integers i, j, k in the range
[0, n], then for any pair {z,y} of vertices at distance k apart, the number of
vertices z such that d(z,z) = i, d(z,y) = j is a constant number pfj. Those
numbers are the intersection numbers of the association scheme (X, R).
Notice that the number of triples {z,y,2} with d(y,z) = k,d(z,y) =
J» d(z,x) =i also is p¥; and thus the condition: pf; = pf; is satisfied.

We take from [1, Chap. III] the following proposition.

ProposITION 2.1. — Let (X, R) be a symmetric association scheme.
Then (X, R) is a metric scheme if and only if the first intersection matrix
Ly = ’fj] is a tridiagonal matrix with nonzero off-diagonal entries of the
form:

ro U1 0 0 0 ]
1 a1 b 0 0
0 Co Q2 0 0 ) ) )
Ll =(0 O c3 ... 0 0 ;pjl;l =bj_1,p{j=aj,p{j1=cj+1,
0 0 0 ... bp—a O
0 O 0 vee Qp—1 bn—l
L0 0 0 ... Cn an

where v, is the valence of (X, R), i.e., the number of points which are
1-associated with any z € X.

2.2. Abelian schemes.

What we will define as an Abelian scheme is usually known as a
Schur ring (more precisely the Bose-Mesner algebra associated with an



METRIC COSET SCHEMES REVISITED 835

Abelian scheme is called an S-ring), since Schur first defined that structure
in general finite groups [34] [35]. An account on S-rings is given in [1, pages
104-113]. We found it convenient to just use the words Abelian schemes
because only finite Abelian groups are considered here.

DEeFINITION 2.2. — Let X be a finite Abelian group and let R =
{Ro,Ri,...,Rn} be a family of n+1 relations R; on X such that (X, R) is
an association scheme. Then (X, R) is an association scheme invariant
under translation if

(z,y) € Ry = (z + 2,y + 2) € R;,

for each z € X and i = 0,1,...,n. Since the structure of an Abelian group
is essential for that additional axiom, such an association scheme is simply
called an Abelian scheme in the sequel and (X, R) will always denote an
Abelian scheme.

The Abelian scheme (X, R) may be given by the family {X, =
{0}, X1,---, X} of subsets of X defined by

X, = {.1' - y|(x,y) € R,}

We cannot have (z,y) € R; and (2',y') € R; withi # j, and z—y = 2'—y'.
Indeed 2/ —z =y —y = (¢ + (¢’ —z),y+ (¥ — y)) € R;. Thus
XiNX; =@ for i # j. But {Ro,R1,...,Ry} is a partition of X x X.
Hence {Xo = {0}, X1, -, X} is a partition of X and

(r,y) e Ri &z —y e X,.

The classes {X1,...,X,} containing all nonzero elements are called the
Abelian classes of (X, R). The class X; will denote the set of weight ¢
elements in X. However if the Abelian scheme is not metric, the weight
is only a label. If the Abelian scheme is metric it is given by an ordered
partition [Xo = {0}, X3,...,X,], because distances are ordered. Since a
metric scheme is a symmetric association scheme then X; = —Xj.

2.3. Codes in Abelian schemes and in metric schemes.

Let z and z’ be in a same coset of an additive code Y in an Abelian
scheme (X, R). The fact that the rows of the outer distribution matrix
B of Y in (X, R), indexed by z and ', are identical follows invariance
under translation. Indeed if (z,y) € R; y € Y, then (z/,y + 2’ — z) €
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R;, where y + 2’ — z € Y, and thus the number of i-th associates of z in
Y is equal to that of 2’ in Y. This leads to the following definition.

DEFINITION 2.3. — Let Y be an additive code in an Abelian scheme.
The rows, denoted by B(Z), # € X, of the restricted distribution
matrix B of X are numbered by the cosets Z of X = XY,

BJ(E) = Bj(IE), z€Z, 7=0,...,n,
where B is the outer distribution matrix of Y in (X, R).

DEFINITION 2.4. — For an additive code Y of an Abelian scheme
(X, R), the distribution partition for Y in (X, R) is the partition of
X = X/Y given by the equivalence relation

Z =y <= B(z) = B(y),
where B is the restricted distribution matrix of Y in (X, R). The classes of
the distribution partition will be denoted by {Xo =Y, X1,..., Xy'}.

Notice that ¢’ is the combinatorial number of Y (Definition 1.5). The
next example is taken from [11].

Example 2.1. — Consider the 2-error-correcting code Y of length
n = 15 over Fsy. It has 128 elements called codewords. The Abelian group
X is (F1%,+). Then the Abelian scheme (X, R), R = {R;}o<i<n considered
here has for Abelian classes X1,..., X15 where X; is the set of codewords
of weight . Thus (z,y) € R; <= z—y € X,. It is a Hamming scheme, thus
a metric scheme denoted by H(15,2). The corresponding Hamming graph
has 215 vertices (which are the vectors of F}° and z,y is an egdge if z — y
is a vector with exactly one nonzero component). The coset group X/Y is
denoted by X. The restricted distribution matrix B of X is given by
the first 8 columns of B, since here B;(Z) = B;(Z,n — 1)).

Distances to Y  Coset Weight Distributions

0 1 0 0 0 0 18 30 15
1 01 0 0 6 12 19 26
2 0 01 0 6 15 16 26
2 0 01 2 4 11 20 26
3 0 00 1 3 18 30 12
3 0 00 1 7 14 18 24
3 0 00 3 5 10 22 24
3 000 3 9 6 10 36
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DEerINITION 2.5. — The coset configuration of an additive code Y
in an Abelian scheme (X, R) is the partition of X x X into the relations
R;, i=0,...,t defined by

(,9) ERi<=T—-g€ X,
where {Xo =Y, X1,..., Xy} is the distribution partition of X.

DEFINITION 2.6. — The partition {Y = Ey,Ey,---,E,} of X in a
metric scheme (X, R), where E; is the set of points at distance i apart
from the code Y, i =0,...,p is the distance partition of X with respect
toY.

DEerINITION 2.7. — The integer p introduced in Definition 2.6 is the
covering radius of the code Y. It is the largest distance of a point to Y
in X.

DermNiTION 2.8. — Let (X,R) be a metric scheme. A partition
w = {Eo,E1,---,E.} of X will be called a partition design [10], [9],
if for any i,j € {0,---,r} and any z € E,; the number M(i,j) =| {y €
E; : d(z,y) = 1} | does not depend of the choice of x in E;. The matrix
M = [M(%,7)] is called the associate matrix of the partition design .

DEFINITION 2.9. — A code Y is said to admit the r-partition design

7 ={Fo,E1,---,E.,} of X if Y = |J E, where S is a nonempty subset of
vES

{0,1,...,r}.

DeriniTION 2.10. — Let Y C X be a code in the metric scheme
(X, R). The distance distribution matrix [13] [14] of Y in X is the
matrix B = [B(z, j)] whose (z, j)-entry, is

Bj(z) = B(z,j) =[{y € Y | d(z,y) = j} |,

where z € X,and j € {0,1,---,n}.

The reader is invited to compare this definition with that of the outer

distribution matrix (Definition 1.2).

DEFINITION 2.11. — The combinatorial matrix of a code Y in a
metric scheme (X, R) is the matrix A = [A(z, j)] where the element in
position (z,5),x € X,j > 0 is A(z,j) = number of paths of length j
joining x to an element y € Y in the distance-regular graph (X,T").
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DEFINITION 2.12. — A code Y in a metric scheme (X, R) is com-
pletely regular when the row-vector B(z) = [Bo(z), ..., Bn(z)] only de-
pends on the distance d(z,Y) =i between z and Y.

This definition can be usefully confronted with Definition 1.3.

Let us now recall some results essentially given by Theorem 3.2 and
Corollary 3.1 of [9] or Proposition 3.14 and Corollary 3.15 of [8] and whose
proofs have been extended to distance-regular graphs by A. Montpetit [28,
Proposition 3.2.10 and 4.2.2], see also [3]. In fact Proposition 4.2.2 of [28]
generalizes Proposition 2.3 below to codes in t-regular graphs.

ProrosiTION 2.2. — For a code Y in a distance-regular graph, the
covering radius, the external degree and the combinatorial number satisfy

p<s <t

THEOREM 2.1. — If a code Y in a distance-regular graph admits a
r-partition design, then we have

/

p<s <t

<.

The code Y with external degree s’ admits an s'-partition désign if and
only if the distinct rows of the combinatorial matrix A of Y are linearly
independent, i.e., if and only if the equality t' = s’ is satisfied.

ProprosITION 2.3. — A code Y in a distance-regular graph is com-
pletely regular (Definition 2.12) if and only if the distance partition (Def-
inition 2.6) {Y = Ey, E1,...,E,} is a partition design (Definition 2.8) or
equivalently if Y admits a partition design whose number of classes is equal
to the covering radius p of Y.

Remark 2.2. — It follows from [9, Proposition 2.2] that the matrices
A and B are equivalent in the sense that rank(A) = rank(B) and the
number of distinct rows is the same in A and B. As pointed out in [9]
the combinatorial matrix A is especially suited to the study of partition
designs. The present remark will be emphasized in Section 4.4 where a
construction of metric schemes is introduced.
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2.4. New Abelian schemes from additive codes.

2.4.1. Coset schemes.

One of the remarkable results of Delsarte [13, Theorem 6.10, Theorem
6.11 and the remark page 88] is the following.

THEOREM 2.2. — In an Abelian scheme (X, R) the coset configuration
of an additive code Y is an Abelian scheme in its turn if and only
if the combinatorial number of Y is equal to its external degree or
equivalently if the distinct rows of the restricted distribution matrix are
linearly independant.

Theorem 2.2 is generalized as Theorem 3.5 of [18]. A complete
exposition of topics related to Theorem 2.2 can be found in [7, Section
5]. We summarize some results after the following proposition.

LEmMMA 2.1. — Let Y be an additive completely regular code in a
metric Abelian scheme with Abelian classes X1,...,X, and let 7 ={Y =
Ey,---,E,} be the distance partition of X with respect to Y. Then E; is
a union of cosets of Y, i =0,..., p. The coset configuration (X = X/Y, R)
of such a completely regular code is a symmetric Abelian scheme. A coset
% belongs to E; if and only if i is the smallest integer such that 2N X; # 0.

Proof. — We first prove that (X,R) is an Abelian scheme. The
metric of the scheme (X, R) being invariant under translation, each class
E; is an union of cosets of Y. We denote by E; the image ¢(E;) of
E; under the homomorphism ¢ from X onto the quotient group X/Y.
We first notice that, Y being completely regular (Definition 2.12) then
7 = {¢(Eo),---,(E,)} also is the distribution partition (Definition 2.4),
of X/Y. The distribution matrix having p+ 1 distinct rows, the rank s’ +1
of that matrix is at most p + 1 and since p < s’, by Proposition 2.2, then
the p+ 1 distinct rows are linearly independent. By Delsarte’s Theorem 2.2
we know that the coset configuration (X, R) is thus an Abelian scheme. By
hypothesis all rows indexed in F; of the distance distribution matrix B of
Y in X are equal. This means that the coset configuration (X = X/Y, R)
is given by: (Z,7) € R; <= 7 — § € E; = o(E;).

Since d(E;,Y) = i, then for every Z in E; and for every z in Z, we
have a couple (z,y) € E; x Y with d(z,y) = i. Thus d(z’ =z — y,0) =i
and 2’ € N X;. There doesn’t exist an z € E; N X, for j < i, since for
all x € E;, d(z,0) > i. Now we have seen in Section 2.2 that in a metric
Abelian scheme X; = —X;. Thus the permutation £ — —z of X maps
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Z N X; onto —Z N X; which shows that

te€E,= -z€E; E;=-E,.
Thus (X, R) is symmetric. O
2.4.2. The dual of an Abelian scheme.

NoratioN 2.1. — We denote by X' the character group of a finite
Abelian group X. The image under the character ' € X’ of an element
x € X is the complex number denoted by < z,z’ >.

We know that X' is isomorphic to X and that X is the character
group of X’. The dual of a subgroup Y of X is then defined [13].

DEFINITION 2.13. — We observe that the subset Y° of X' defined by
(2) Yo={2 e X'|<z,2 >=1,VzeY}
is itself a group. It is called the dual of Y in X'.

ProrosITION 2.4. — Let Y be an subgroup of a finite Abelian group
X. Then the dual of Y° is Y.

NoTaTiON 2.2. — We used the notations p, s’ and t' for the covering
radius, the external degree and the combinatorial number of Y, respectively.
The corresponding values for Y° will be denoted by p’, s and t respectively,
in the sequel.

We do not have room enough here to precisely define the dual
scheme of an Abelian scheme. We refer the reader to (7, Section 4.7.2] in
which the presentation is very close to that of [19]. We only need to know
that given an Abelian scheme (X, R), with Abelian classes Xj,...,X,,
and a matrix [< z,2’ >,z € X, 2’ € X'] of characters then the theorem of
Tamaschke-Delsarte asserts that an Abelian scheme (X', R’) is automati-
cally defined on the character group X’ of X. It also has n Abelian classes
X1,...,X,. It is called the dual scheme of (X, R). Conversely the dual of
(X',R") is (X, R).

DEFINITION 2.14. — The restriction (Y, RY) of an Abelian scheme
(X, R) to an additive code Y with weights ig = 0,11, ...,1s is defined by the
partition {Y,Y,,...,Y;,} of the Abelian group Y, where Y;, =Y N X;,
as follows:

(x,y) eRY ifx—yeY,, v=0,1,...,s.
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Theorem 6.10 and the remark page 88 of Delsarte [13] can be stated
as follows.

THEOREM 2.3. — The restriction (Y, RY) of an Abelian scheme (X, R)
to an additive s-weight code Y is an Abelian subscheme if and only if the
restricted distribution matrix of the dual Y° of Y (which has rank s + 1)
in (X', R') has exactly s + 1 distinct rows, or equivalently if s = t, where t
is the combinatorial number of Y°.

Theorem 2.3 with Theorem 2.2 give the following.

THEOREM 2.4. — In an Abelian scheme (X, R) the coset configuration
(X,R) of a code Y is an Abelian scheme in its turn if and only the
restriction (Y°, RY") of the Abelian scheme (X', R') (dual to (X, R))toY®
is an Abelian scheme. That Abelian scheme is the dual scheme of (X, R).

3. Coset configurations which are metric
Abelian schemes.

3.1. The group algebra of an Abelian scheme.

DEFINITION 3.1. — The group algebra CX of the Abelian group X
over the field C consists of all formal sums

a= ZazZz,az eC,ze X.
zeX

Addition and multiplication of elements of CX are defined in a natural way
by

Zaxe+zsz’”=Zaz+b z,rZaxZw—Zrasz,reC
zeX reX zeX zeX zeX
and

> a2 0 Z2°=) 77 ) asb,

zeX zeX zeX Tt+y=z

Clearly Z° is the unity of CX and can be written 1. If S C X is a
subset of X, then we shall write

=) Xx°.

z€S



842 P. CAMION, B. COURTEAU, A. MONTPETIT

3.2. Algebraic tools.

The following two theorems and two lemmas give reformulations of
Abelian schemes and partition designs in terms of the group algebra CX
of X. The first one is stated as Theorem 4.30 in [7].

THEOREM 3.1. — Let X be an Abelian group and let {X, =
{0}, ..., Xn} be a partition of X. That partition defines an Abelian scheme
on X, ie., Xq,...,X, are the Abelian classes of a scheme, if and only if the
subalgebra of CX generated by {Z%:|i = 0,...,n} has dimension n+ 1. In
that case we have

n
ZXiZXj _ prjzxk
k=0

where the coefficients pfj are the intersection numbers of the scheme.

The theorem is simply, in the particular case where X is an Abelian
group, a reformulation of [13, Theorem 2.1] characterizing an association
scheme by its Bose-Mesner algebra. It clearly shows how an Abelian scheme
is a particular instance of an S-ring. The second theorem characterizes in
algebraic terms metric Abelian schemes. Delsarte proved [13, Section 5.2]
that an association scheme is metric (Definition 2.1) if and only if it is
P-polynomial. The reader desiderous to see the necessary proofs is refered
to [1, Section 3.1]. We only here need to reformulate the P-polynomial
property for Abelian schemes. The next theorem follows from using the
representation of CX as used in [7, Section 4].

THEOREM 3.2. — An Abelian scheme is metric with respect to the
ordered set of Abelian classes [Xi,...,Xy] if and only if there exists a
polynomial v;(z) of degree i, i =0,...,n such that

ZXi = v (2%Y), i=0,...,n.
We now have to prove two lemmas.

LemmaA 3.1. — Let (X,R) be a metric Abelian scheme with the
ordering [Xi,...,Xy] of its Abelian classes. Let m = {Ey,---,E,} be a
partition of X. Then = is a partition design (Definition 2.8) if and only if
in the group algebra CX we have

(3) ZBz% =y M(5,0) 2%

=0
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for i,5 =0,---,r. The matrix M = [M(3,j)] is then the associate matrix
of m.

Proof. — In the group algebra CX, we have

zBz% =N X" N zh=3" Yzt

z€E; heX, z€FE; he X1
T
4) ZPzX =3 "N " M(y,i)2Y
J=0y€EE;

where M(y,i) =|{z € E; |y—z=h € X1} |=| {z € E; | d(y,z) = 1} |,
since X1 = —X;. Thus M(y, ¢) is the number of points in E; adjacent to y.

If 7 = {Eo,---,E,} is a partition design, then M(y,i) = M(j,4) for
any y € E;. Then (4) becomes

ZB 7% = iM(j, i)y zv= iM(j, NVAZE

=0 yEE; =0

Conversely, if this last equality is valid, then (4) gives M (y,:) = M (j,1) for
any y € E; because in the group algebra the set {Z¥ | y € X} is linearly
independent. O

Let Y C X be an additive code and let ¢ : X — X = X/Y be the
canonical homomorphism defined by p(z) = z+Y =Z. Let p : CX — CX
be the algebra homomorphism defined on CX by extending ¢ by linearity:

(,5( Z azZz) = Z a,p(Z%) = Z AL

zeX zeX zeX

By applying the algebra homomorphism @ to the relation (3), we
obtain the following lemma.

LEMMA 3.2. — Let Y be an additive code of X and 7 = {E; | i =
0,---,r} be a partition design of X such that Y = Ey, and satisfying the
property x € E; = x+Y C E; fori=0,---,7. Set E; = {p(z) |z € E;} =
@(E;). Then the image @ = ¢(r) = {E; | i =0,---,7} of 7 is a partition of
X = X/Y such that

(5) ZFa(2) =Y M(j,i) 2"
J=0
where a(Z) = p(Z2%1) = azZ% with az =| X1 NZ|.

zeX
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Proof. — We have
P2 =9 27=3 2°@ =Y | Y] 25 =Y | 25

T€E; z€E; Z€E;

and

p(2X) =0 > z°=) 2°® =3 a;2°

rEX) T€X) zeX
where oz =| X1 N Z | is the number of weight one elements in the coset Z.
Relations (5) are then obtained by applying @ to relations (3). O

Remark 3.1. — If Y is 1l-error-correcting, then by definition there is
at most one z in the coset @ such that w(z) = 1. In this case, az = 1
for @ € p(X;) and ag = 0 otherwise, so a(Z) = . Z% = ZX1 where

w€p(X1)

X1 = ¢(X1). If Y is completely regular, then by definition a(Z) = cZ%1
where ¢ is the number of weight one elements in any given coset of Y at
distance one from Y. In fact, Y may be define to be 1-regular if the coset
weight distributions of Y are the same for any coset at distance one from
Y. In this case we also have by definition that a(Z) = cZX.

3.3. Tools for further constructions.
3.3.1. Characterisation of metric coset schemes.

We now come back to Section 1.2 in the introduction and we arrive
at the theorem under investigation.

THEOREM 3.3. — Let Y be an additive code in a metric Abelian
scheme (X, R) with the ordering [X1,...,Xpn] of its Abelian classes such
that Y N X; = @. A necessary and sufficient condition for its coset
configuration (X = X/Y, R) to be the metric scheme of the graph (X, A)
in which (Z,¥) is an edge if and only if (Z —§)NX; # @ isthat Y is a
completely regular code.

Proof. — The condition is necessary.

Since the coset configuration (X, R) on the quotient group X/Y is
the Abelian scheme defined by the distance-regular graph (X/Y,A), its
Abelian classes {X;,..., Xy} are given by: (Z — 9) € X; & §(z,9) = 1,
where § is the distance relation in (X/Y, A). Let us see that X; is a set of
cosets in which every point is at distance exactly ¢ from Y in (X, R). First
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notice that all points in a same coset Z are at equal distance from Y, the
metric of (X, R) being invariant under translation. We thus show that the
distance to Y is precisely 4 for a point in Z and for all Z € X;. For in the
distance-regular graph (X/Y,A) of (X, R), a coset € X; is at distance i
from Xo =Y : §(%,Y) = i. This means that such a coset, say Z, is a sum of
i cosets contained in X; and not less. Since a coset in X, is, by hypothesis,
translated from Y by an element u of weight one (i.e. u € X;), then Z is
translated fom Y by an element x which is the sum of i elements of weight
1. Thus in the distance-regular graph (X,T) of (X, R),d(z,0) = j <. The
weight of z is j in (X, R) and if j were smaller than ¢, then Z being a sum of
j cosets contained in X; would be in X # X;. Denoting by p the covering
radius of Y (Definition 2.7), we thus have ¢’ = p. Since by hypothesis any
two cosets in X; have the same distance distribution, then Y is completely
regular.

The condition is sufficient.
First proof (Relying on Theorem 2.2).

We aim to show that (X = X/Y,R) is a metric Abelian scheme
with respect to the ordered set of Abelian classes E,-- -, E, where m =
{E1,---,E,} is the distance partition of X with respect to Y. Since
by hypothesis Y is completely regular, then 7 is a partition design, by
Proposition 2.3. Let M be the associate matrix of the partition design 7.

By Lemma 2.1 the coset configuration (X, R) is a symmetric Abelian
scheme with classes X; = E; i = 0,...,p. By Proposition 2.1 we now
have to verify that the first intersection matrix L; = [p} ;] has the desired
property for a suitable choice of the class X;. We first notice that if
M(%,j) # 0 then | — j| < 1 and M is thus tridiagonal. The hypotheses
of Lemma 3.2 are satisfied and we may write

(6) ZBia(Z) = i M (k, )25
k=0

where by Remark 3.1 a(Z) = cz%1, By definition of the intersection
numbers 7 ; we have that

(7) ZXI ZEi =t ZE] ZE'L — thzE'k

Thus from (6) and (7) p¥, = ¢ *M(k,i). We have in particular that
), = ¢ 1M(0,1). Since p9; is the valence v; of R; in the symmetric



846 P. CAMION, B. COURTEAU, A. MONTPETIT

association scheme (X, R), then p$; = E;, the number of cosets at distance
1 from Y. We can alternatively see that [Y|M(0,1) = |E;|c = |Y|E1|c. By
relations (17) of [9] we have |Ep|M(0,1) = |E;1|M(1,0), then M(1,0) = ¢
and p1, = 1 as required by Proposition 2.1. Since by definition Y N X; = &
then M(0,0) = 0 as required. Now let y be any point in E;. By definition
of E; there exists a shorstest path © = zg, 1, ...,T;—1,z; = y joining some
point € Y to y. But then z;_, € E;,_; and d(x;—1,z;) = 1. This shows
that M(i—1,7) # 0 for 0 < i < p. Considering a point y € E;;1, i < p, we
similarly see that M (i,i+ 1) # 0 for 0 < i < p.

Second proof (ignoring Theorem 2.2).

In matrix notation, relations (6) give
a(Z2)[ZBe,. .., 2B = (20, ... 7B M,
8) a(2)[2%,- -, 2%) = (2%, -, 2P| M°

for s =0, -, p. Finally, multiplying both sides to the right by the column
vector e; = [1,0,---,0]*, we obtain

(9) 1,a(2),a(2)% -, a(2)"] = (2%, ..., ZB:]A®

because by Theorem 3.1 of [9], whose proof is easily extended to the
case at hand (see [28, Prop.3.2.8]), the column number s of the restricted
(r+1) x (r + 1) combinatorial matrix A" of a code Y admitting a r-
partition design is simply M®e;.

Since Y is completely regular, then A() is upper triangular and
invertible [9, Theorem 3.1], we may write by inverting AP

_- p -
(10) 28 =Y gi5(a(2))° = gi(a(2)) = g:(cZ™"))
s=0
where [g; 0, -, gi |t is the column number 4 in [A(P)]~1.

This last matrix being upper triangular in its turn, g; ;41 = -+ =
9i,p = 0 and so degree (g;) =i for i =0,---,p.

A Schur-ring has been brought to the fore, which implies that (X, R)
is an Abelian scheme, by Theorem 3.1. Theorem 3.2 achieves the proof. O
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3.3.2. Direct computation of the intersection numbers and eigenvalues of
the coset scheme when the code is 1-error-correcting.

Let us first observe that from [1, Chap.IIl] polynomials v; satisfy the
recurrence

(11) zvi(x) = bi—1vi—1(x) + ;v (x) + ciy1vit1(z), 0 < i < p,

which gives an easy way of computing the polynomials v; when [M (i, j] =
[plj] is known. Next we have that (Definition 1.1) L, = vp(L;) = [Dg,), € =
2,..., p. The eigenvalues Py (i) of (X, R) can be computed similarly.

We now use the argument of the second proof to obtain those
numbers.

Invoking (10) and (8) we can write
2P 2 = g a(2) 7P = 3 gun(0(2)) 2P
s=0
= igi,s(a<2))8[zﬁo, <o, ZPo)e; = igi,s[zﬁ°, oo, 2B (M)
5=0
(12) Y (M2 - ZPUZ“

k=0 s=0

where M®e; is the column number j of M. So
(13) VAVAZIES Z VAR
and by Theorem 3.1 the partition 7 =

{
on X/Y = X the Abelian scheme (X, R
intersection numbers.

Ey = {0}, Ey,---,E,} determines
) where the coeflicients plj are its

Let us defined what was called in [7] the Hecke representation D;
of Z% € C(X).

The entries D;(z,y) of the matrix Dj; are

_ 1 ifz—§=3,
D:(z,9) = {0 otherwise.

The image of a(Z) by the Hecke representation of C(X) is
(14) D = Z aij,. = Dl,
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where az =| X1 NZ |= 1. The image of (10) then gives

(15) D; = gi(Dl)

where g; is the polynomial of degree ¢ whose coefficients are given by column
number i of (A®)~1.

This implies that the scheme (X, R) is P-polynomial with respect to
the eigenvalues Ao, A1, - - -, A, of D1 [13, Section 5.1], that is the eigenvalues
Py (i) of Dy which define the first eigenmatrix P = [P(i, k) = Py (i)] of the
coset scheme (X/Y,#) = (X, R) satisfy

(16) Py (2) = gi(N)
where Mg, -+, A, are the eigenvalues of D;.

Remark 3.2. — For the determination of the eigenmatrix P of the
coset scheme (X, R) we may use the definition of the polynomials g given
by (10), to express (16) in matrix form as follows:

1 Xo---(No)? 1 P(0)---P,(0)
(17) : =|: AP — pA.

LA (M) 1 Pi(p)---Py(p)

3.3.3. From coset schemes to restrictions.

For the following statement, we only need to know that an association
scheme is @Q-polynomial when its dual is metric. From Theorem 3.3 and
Theorem 2.4 we can state :

THEOREM 3.4. — Let (X, R) be a Q-polynomial Abelian scheme. Let
Y be an additive code of (X,R). Then he dual Y° of Y is completely
regular in the metric Abelian scheme (X', R') dual to (X, R) if and only if
the restriction (Y, RY) is a Q-polynomial Abelian subscheme of (X, R).

4. Concrete examples.
4.1. The metric coset scheme of the binary Golay code.

It was observed in [8] that the binary (23,12,7) binary Golay code Y =
Gas, as a perfect code admits a partition design 7 = {Ey =Y, E1, ..., Es}
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which is the distance partition of X = (F23,+) with respect to Y. The
associate matrix M of 7 is

0 23 0 O
1 0 22 0
M= 0 2 0 21
0 0 3 2

By Proposition 2.3, Y is completely regular and Theorem 3.3 applies.
Thus the coset configuration of Y in the Hamming scheme (X, R) is an
Abelian scheme. This was shown in [7, Example 4.46] by using the fact
that the Mathieu group acting on a 23-set may be represented in GL(11, 2).
Exercise 4.40 in [7] would show that this Abelian scheme is metric. The
intersection numbers of the scheme are computed in [7, Example 4.46)
through combinatorial enumeration. We find again those values by matrix
computation following Section 3.3.2. We here have p = 3. Then the
combinatorial matrix (Definition 2.11) of Y in the Hamming scheme (X, R)
is computed, through the powers of M.

10 23 0 10 % o

01 0 67 _ 01 0 =%

AP = 00 2 0 Plol" =4 = 01§
2

00 0 6 o0 o 1

Let us denote the matrix [(M?®e;)x] by [h(s)k,j)]. We have that
[1(0,k, 7)] is the identity matrix and [h(1,k,j)] = M. Next

23 0 506 0 0 1541 0 10626

. 0 67 0 462 . 67 0 2860 9240
pEED =15 o 107 a20| PEEI=17 960 1260 10647
0 6 60 463 6 120 1521 10520

Finally as for the intersection matrices (Definition 1.1) we have that Ly is
the identity matrix and L; = M. Next, using relations (12), we obtain

0 0 233 O 0 0 0 1771

|02 0 231 - |0 0 231 1540

2711 0 42 210’ 7 |0 21 210 1540

0 3 30 220 1 20 220 1530
Remark 4.1. — Notice that the Abelian scheme just considered is

not isomorphic with a Hamming scheme. For it has 2!! elements and as a
Hamming scheme, since 11 is prime it would have 11 classes instead of 3.
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4.2. Metric coset schemes whose codes

are not completely regular.

DEeFINITION 4.1. — We denote by F; the set of nonzero elements of
F,. We consider in the Abelian group X = (IF;", +) a subset E of nonzero
elements such that F;E = E and a subset E* obtained by choosing a
nonzero vector in each one dimensional subspace contained in E U {0}.
For any subset F of X, then C(F) denotes the subspace generated by the
rows of the matrix whose column set is F. It is an additive code in an
Abelian scheme on the Abelian group (F,, +)F. The main Abelian scheme
that we have in mind is the classical Hamming scheme whose classes are all
subsets of (Fq, +)F with constant Hamming weight, the Hamming weight
of a vector being the number of its nonzero coordinates. The set F is refered
to as the set of coordinate forms of C(F). The subspace C(E*) is called
the projective code associated to E. The code C(E*) is only defined up
to equivalence.

We here refer to (9, Section 4] and (7, Example 5.17]. Let X} be the
set of vectors of weight k in F7*. The set Xy may be considered the set
of columns of a generator matrix that is denoted by Gg. Thus the linear
code Y given by that generator matrix is denoted by C(Xx). The generator
matrix of C(X}) is denoted by Gj. The code spanned by the transposed
of Gy, i.e., by the columns in X} is denoted by T'. To shed light on the
example dealt with below, we first establish a theorem which is an easy
consequence of the discussion in [7, Example 5.17]. It also is very much
related with the results in Section 7 of [38].

Remark 4.2. — The codes of Definition 4.1 were introduced in [6] and
were investigated more deeply in [2]. The weight enumeration obtained in
[6] for the binary field F; was there obtained for any finite field F,. Remark
4.6 below also gives an easy way of calculating the weight distribution.

THEOREM 4.1. — If the number of nonzero weights of Y equals the
number of nonzero weights of T, then the restriction (Y,RY) to Y of the
Hamming scheme H (| Xy|,q) defined on the set of all codewords over Fy of
length | X| is an association scheme.

We first show that the number £ of nonzero weigths of T is at least
t, the combinatorial number of Y°. For we notice that a codeword of T
is a syndrom Grz”T = u of the code Y°, where = € ]FLX’“I. Thus z is in
a coset of Y°. Let v be any other syndrom of Y° with the same weight
as u. There exists an m X m monomial matrix o over F, (i.e., a matrix
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with exactly one nonzero element in each row and in each column) such
that ou = v. Thus 0GrzT = v. This means that there exists a vector Y
obtained by permuting the positions of x such that Gxy? = v. Thus the
coset corresponding to the syndrom v has the same weight distribution as
that corresponding to u. Now the number of distinct weight distributions
of cosets of Y°, is by definition ¢ + 1 where ¢ is the combinatorial number
of Y° (Definition 1.5 and Proposition 2.4) and we have that ¢ < ¢. By
assumption £ = s (Proposition 1.1) and by Proposition 2.2, s < t. Hence
s = t: Theorem 2.2 and Theorem 2.3 apply. O

Remark 4.3. — The cosets of Y° consist in a group isomorphic with
its group of syndroms. That group is a subgroup of (IF;", +) in general. But
if rank(Xy) = m then the coset scheme obtained under the assumption of
Theorem 4.1 is isomorphic with a Hamming scheme. The code Y always has
at most m nonzero weights since £ < m and s < t < £. This also can be seen
by observing as in [7, Example 5.17] that all linear combinations of the rows
of G with the same number of nonzero components yield codewords of Y’
with equal weight. If Y has exactly m nonzero weights then the restriction
(Y,RY) to Y of the hamming scheme H(|Xx|,q) defined on the set of all
codewords over F, which, as a consequence of Theorem 4.1 is a subscheme
is thus isomorphic with the Hamming scheme H(m,q). That particular
situation was considered by T. Bier [2] where this author proves that if the
code with generator matrix Gy has m distinct weights then the restriction
(Y, RY) is essentially the Hamming scheme H(m,q).

COROLLARY 4.1. — Let ¢ = k = 2 in the statement of Theorem 4.1.
Then Y° is completely regular (and the coset configuration of Y° always
is a metric Abelian scheme). The valence of the corresponding distance-

regular graph is (2), the number of its vertices is 2™~ ! and its diameter

“13)

Here G2 has rank m — 1 over F; and each syndrom of Y° has even
weight. Thus ¢ < [%J, by the argument above. But every syndrom of
weight 2w is obtained as a sum of w columns of G2 and not less. Thus

m
the corresponding coset is at distance w from Y°, w =0,..., [5-' Hence

t= [%J and Y° is completely regular. Theorem 3.3 applies.

Remark 4.4. — The distance-regular graph here has all vectors of
even weight as vertices and (z, y) is an edge whenever the Hamming weight
Wy (z —1y) is 2. That distance-regular graph is given in Example 1, Section
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5.3.3 of [13] in which it is shown that we have a tight design if and only
if m is odd. That graph is also considered in [3, p.114] as the half-cube
(bipartite half of the Hamming graph H(m,2)).

m

2
spanned by the characteristic vectors of cycles of the complete undirected

graph of m vertices. Then'Y is completely regular in the Hamming scheme
H(¢,2).

COROLLARY 4.2. — Let Y be the additive group of F%, £ =

Remark 4.5. — The author of [2] also considers the case ¢ = 2, k
even. He essentially asserts that if Y has exactly lTJ distinct weights in

that case, then the coset configuration of Y° is a coset sheme. This here
appears as a corollary of Theorem 4.1.

On the other hand let Y* be the projective code associated to Xk,
i.e. the code C(X}) (Definition 4.1). If the restriction (Y, RY) of the Ham-
ming scheme H(|Xkl|,q) to Y is an Abelian scheme with Abelian classes
Y..,...,Y: (Definition 2.14) (thus isomorphic with H(m,q)) then the re-
striction (Y*, R*Y") of the Hamming scheme H (| X}|,q) to Y* clearly is an
Abelian scheme isomorphic with (Y, RY), with Abelian classes Yo,
Since a Hamming scheme is selfdual, then the coset configuration of Y*° not
only is an association scheme, by Theorem 2.4 but it is a metric scheme. It
clearly is the Hamming scheme H (m, q) endowing the group of syndroms of
Y°. The Abelian class Y;} defining the edges of the distance-regular graph
of (Y*,R*Y) is the set of (¢ — 1)m nonzero codewords which are scalar
multiples of the rows of G}. We see next that the dual Y*° of Y*, which is
a l-error-correcting code is however not completely regular if £ > 1, ¢ > 2.

THEOREM 4.2. — Let X be the set of vectors of weight k in Fi*. Let
the generator matrix of the linear code Y* have as set of columns X} . If
Y* has exactly m nonzero weights, then the restriction (Y*, R*Y") of the
Hamming scheme H(|X}|,q) is a Hamming scheme as well as the coset
configuration of the dual Y*° of Y* and Y*° is not completely regular if
k>1,q9>2.

We only need to show that the covering radius p’ of Y*° is smaller
than m for k > 1 (Proposition 2.3 and Theorem 2.1). It is readily seen that
. . . . w .
a syndrom of Y*° is a linear combination of at most [_I;-l columns of G}, if
w > k and is less than 3 if w < k.
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Example 4.1. — Here ¢ = 3 and k = 2 The code Y* spanned over
F3 by the following generator matrix has three nonzero weights. For every
linear combination of 2 (resp. 3) rows has weight 5 (resp. 3). The code Y*°
is seen to have as generator matrix G5.

111100 112 2 00
G3=|12 001 1|Gs=1|1 2 0 0 2 2
0 01 21 2 0 01 2 21
The argument used for Y* applies and thus both coset configurations
of Y* and Y*° are Abelian metric schemes and however none of those codes
is completely regular.

Remark 4.6. — In general the weights of the code C(X}) (Definition
4.1) are given by the Krawtchouk polynomials (see [27, Chap. 5, §7]). The
m possible weights of Y are obtained from Delsarte results [14] [15] (see [7,
Example 5.17))

Wm,; = (lel - Pk(z))(q - 1)/(], 1= 0, e, M.

The hypothesis of Theorem 4.2 are satisfied for ¢ = 3 with k =2, m =
3,5,6,8,9,11,... and for g =2 with k=3, m =8§,12,14,...

4.3. Partition designs admitted by the dual codes of C(X3).

After [9, Section 4] every code Y*° dual to C(X};) admits a partition
design. The associate matrix M (u,v) can be computed with the help of [9,
Proposition 4.2] as follows. To the partition {Ey, E1, ..., E:} corresponds a
partition {Ag, Ay, ..., A} of syndroms, where A; is the set of syndroms of
weight i. For any choice of an element a € A,,, the number M (u, v) counts
the pairs (b, h) € A, x F; X} satisfying a = b+ h.

Considering a sum a = b+ h, let a be the number of nonzero
components h; of h such that a; = 0. Let 8 be the number of nonzero
components h; of h such that b; = 0. Next let o be the number of nonzero
components b; of b with h; = 0 and finally let v; be the number of nonzero
components b; of b such that h; # 0 and b; + h; # 0. We have that

(18) v—a+fB=u a+B+mn=k a+rn+mn=v
or

(19) a=k—-u+y; B=k—-v+7; 1 =v—k+u~— 2,
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where o, 8,7: should be non-negative integers and k > |u — v[,0 < 7o <
m — k, else M (u,v) = 0. we have ‘

0 M= () () @2 (") -0

Yo=0
where a, 3,; take their values from (19).

We also have that M, = L; where Ly is the k-th intersection matrix
of H(m,q) (Definition 1.1). It is furthermore known that Ly = wvg(L;)
where vi(z) is the polynomial that is computed with recurrence (11).

Remark 4.7. — We will introduce in the sequel a new construction
of metric Abelian schemes. Relations (20) are the basic data for those
computations.

Example 4.2. — For ¢ = 3, m = 3,k = 2 then the associate matrix of
the partition design admitted by Y*° is the matrix M3 below.

We have seen that if the code Y*° were completely regular, then that
associate matrix would be the first intersection matrix of a metric scheme.
Here M, is the second intersection matrix of H (3, 3) whose first intersection
matrix is Lj.

0 0 12 0 0 6 00
0 4 4 4 1140
Ma=\1 5 5 4|’51= |0 2 2 2
03 6 3 00 3 3

We check that the recurrence for Hamming schemes
L1L1 = UlLo + a1L1 + 02L2 = m(q - 1)L0 + L1 + 2L2

gives Ly = M, as expected.

4.4. Completely regular codes admitted
by the considered partition design.

To end this investigation we develop a construction of metric coset
schemes in which is emphasized how easily examples are worked out with
the help of the associate matrix of a partition design and the combinatorial
matrix of a code admitted by that partition design.
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441 Y =C(Xg) forg=2m=25and k =3.

That code is admitted by a partition design whose associate matrix
Mj is given by relations (20). By relations (23) of [9] or (11) of [8] we can
compute the combinatorial matrix of Y (Definition 2.11). If e; is the first
unit column-vector, corresponding to the class Fy = Y° of the partition
design, then we simply have that

(21) A=[61,M61,M261,....]
0 0 0 10 0 07 [1 0 10 0 640 1
00 6 0 40 0 0 0 60 O
03 0 6 01 00 6 0 624
Mi=1106 030" {01 0 64 o0
04 0 6 00 0 0 6 0 624
(00 10 0 0 Ol 00 0 60 0 |

Since the columns of the matrix are related by a recurrence of degree at
most equal to that of the minimal polynomial of M, we only need to
compute the first m columns of A. The distinct number of rows of the
m + 1 X m matrix obtained is ¢t + 1 where ¢ is the combinatorial number
of Y°. Its rank is s + 1 where s is the external degree of Y°, which is the
number of nonzero weights of Y. Here we have s = 3 (the nonzero weights
of Y are 4,6 and 10) and ¢t = 3. From Theorem 2.1 the covering radius p’
of Y° is at most s = 3 and it is then readily checked that the weight-one
syndrom of Y° cannot be obtained from a sum of 2 columns of the matrix
G3. Thus p’ = s =t and by Proposition 2.3 Y° is completely regular. Since
rank(G3) = 5 over Fy, the corresponding coset scheme has 25 elements and
it has diameter 3. It is not a Hamming scheme.

We have just checked for clarity on the parity-check matrix of Y°
that the covering radius of Y° is 3. It is however important to notice that
considering matrix A is sufficient to see that p’ = s = t. Here the three
distinct rows of A can be rearranged to obtain the upper triangular 4 x 4
matrix A®"). Indeed by Proposition 2.2 of [9] we see from the distance
distribution matrix of Y° (Remark 2.2) that a row B(Z) only depends
on the distance from z € Z to Y°. The associate matrix of the distance
partition (which is a partition design, by Theorem 2.1) is computed from
the matrix A®"). Since MAgP_/ )1 = Agp ) and A®) s upper triangular,
relations

(22) Ai,j+1) = M(5,0)A®0(0,5) +... + M(i,5)A®)(j,5), i =0,...p.
give M(i,7) when M(i,£) is known, £ =0,...,5 — 1.
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4.4.2. A code consisting of two classes of the partition design.

Next we consider the union of Ey and Ej5 in the considered partition
design. The same construction as above where e; + e5, where es is the
fifth unit vector, replaces e; yields the following combinatorial matrix A
below. That new code is obtained from Y° by joining to it the coset whose
syndrom has weight 5. We have here for that code that o’ = s =t = 2.
That code is completely regular and the corresponding coset scheme is a
metric Abelian scheme with 2% element and diameter 2. The intersection
matrices of the metric schemes obtained in Sections 4.4.1 and 4.4.2 are
given here next to A.

[1 0 10 60 640

0 0 6 60 624 0 10 0 O

0 1 64 624 10 9 of [9100
A= ; ;{1 6 3

01 64 624 0 6 0 4 0 6 4

0 0 6 60 624 0 0 10 O

|1 0 10 60 640 |

443 Y =C(Xg) forg=2m =6, k=3.

We first compute the combinatorial matrix of Y° = FEy to see that
Y° is not completely regular. We observe that rank(Gs) = 6 over Fy. The
code considered will consist of two classes of the partition design, Ey U Fg.
Thus the coset scheme that we obtain has 2° elements. We have

1 0 40 O 0 20 0 O
/ 0 2 0 512 2 0 18 0

() — . —
A 0 0 24 0|’ M 0 12 0 8
0 0 0 480 0 0 20 O

We thus have an example where the constant ¢ in the proof of Theorem 3.3
is 2. This construction leads to the same scheme as that of Section 4.4.1.

444 Y =C(Xg) forq=2,m="7,k=3.

Here again the code consists in the union of Fy and E7. The associate
matrix of the distance partition is the first intersection matrix

0 35 0
0 20 15

The distance-regular graph has 64 vertices, valence 35 and diameter 2.
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4.4.5. The case q =k = 2.

The parameters of those metric Abelian schemes are given in Corol-
lary 4.1 and are not listed in the array below. The first intersection matrix
can be computed for every scheme by using relations (20), (21) and (22).
All other intersection matrices are then computed with the help of rela-
tions (11).

4.4.6. Table of results.

m k Classes v Diameter | |X| | ¢
5 3 Ey 10 3 25 1
5 3 EyUE;5 10 2 24 1
6 3 Ey U Eg 10 3 25 2
7 3 EyU E, 35 2 26 1
8 4 EyUEg 35 2 26 2
10 3 EyUE;y | 120 3 29 1

Acknowledgement. The authors thank the referee for drawing to their
attention the paper of Thomas Bier [2] which is relevant to Section 4.2.
They also thank Chris Godsil, Mikhail Klin and Patrick Solé for their
valuable comments.

Added in Proof.

J.A. Bondy observes that the graph given in the second row of the
array above is known as the Clebsch graph introduced by Seidel (see [30,
Section 2.4]).
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