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ON NORMAL ABELIAN SUBGROUPS
IN PARABOLIC GROUPS

by Gerhard ROHRLE (*)

1. Introduction.

Throughout, G denotes a (connected) reductive algebraic group
defined over an algebraically closed field k of characteristic p > 0 and P is
a parabolic subgroup of G with unipotent radical Pu. The aim of this note
is the following result.

THEOREM 1.1. — Let G be a reductive algebraic group, P a parabolic
subgroup ofG, and A a closed connected normal subgroup ofP in Pu. If A
is abelian^ then P has finitely many orbits on A.

The particular case when A is in the center of Pu is well-known.
Then the action factors through a Levi subgroup of P. In characteristic 0
the finiteness follows from a result of Vinberg [41, § 2] on gradings of Lie
algebras (see also Kac [15]) and in general from work of Richardson [28, § 3].
For a detailed account of the orbit structure in this situation, see [24] and
[29, §2, §5].

Observe that for abelian P-invariant sub-factors in Pu, the analogous
statement of the theorem is false in general. Indeed, this fact is the basis for
constructing entire families of parabolic subgroups which admit an infinite
number of orbits on the unipotent radical, or its Lie algebra, e.g., see [25],
[26], [30], and [31]. Examples in this context also show that a parabolic

(*) Research supported in part by a grant from the Deutsche Forschungsgemeinschaft
(DFG).
Key words: Parabolic subgroups - Abelian ideals of reductive groups.
Math. classification: 20G15 - 17B45.



1456 GERHARD ROHRLE

subgroup may have an infinite number of orbits on a normal subgroup of
nilpotency class two, cf. [9], [16].

The modality of the action of P on the normal subgroup A is the
maximal number of parameters upon which a family of P-orbits on A
depends; likewise for the adjoint action of P on the Lie algebra of A,
cf. [26]. The basic machinery for investigating the modality of parabolic
subgroups of reductive groups was introduced in [26]. Apart from [26] there
are several recent articles related to this subject. For instance, all parabolic
subgroups P of classical algebraic groups with a finite number of orbits
on Pu are determined in [12] and [13]. Similar results for exceptional groups
are obtained in [14]. In [8] all such P in GL^(A-) are classified with a finite
number of orbits on a given term of the lower central series of Pu. More
generally, in [25] and [32] the modality of the action of P on the Lie algebra
of Pu is investigated for any reductive G.

The proof of Theorem 1.1 readily reduces to the case when G is
simple, P is a Borel subgroup B of G, and A is a maximal closed connected
normal abelian subgoup of B. In Section 3 we classify all such A, up to
G-conjugacy (Theorem 3.1), and in Section 5 we show in each instance
that B acts on A with a finite number of orbits.

Our proof of Theorem 1.1 uses an extension of the classification of
spherical Levi subgroups of reductive groups to arbitrary characteristic due
to Brundan [4, §4] (see Section 4). From that we immediately obtain a
proof of those cases of Theorem 1.1 where A is contained in the unipotent
radical of a parabolic subgroup whose Levi factor is spherical in G. In
the cases where we cannot appeal to spherical Levi subgroups directly, a
construction from [1] allows us to apply these results partially.

In the two final sections we discuss the situation for the adjoint action
of P on abelian ideals in the Lie algebra of Pu as well as a connection
between Theorem 3.1 and MaPcev's classification of abelian subalgebras of
the Lie algebra of G of maximal dimension [21].

Both, our classification of the maximal closed connected normal
abelian subgroups A of P, as well as the fact that in each of these instances
B operates on A with a finite number of orbits, are obtained in case studies.
It would be highly desirable to have a uniform proof of Theorem 1.1 free of
case analysis, even for the expense of some characteristic restrictions.
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2. Notation and preliminaries.

We denote the Lie algebra of G by Lie G or Q and the identity element
of G by e; likewise for subgroups of G. Let T be a fixed maximal torus
in G and ^ = ^(G) the set of roots of G with respect to T. Fix a Borel
subgroup B of G containing T and let S = {0-1, 02,...} be the set of simple
roots of ^ defined by B such that the positive integral span of E in ^
is ^+ = ^(B). The highest (long) root in ^ is denoted by g. If all roots
in ^ are of the same length, they are all called long. A subset I of ^f+

is an zfl?ea/ in ^+ (see [38, p. 24]) provided I is closed under addition by
elements from ^f+. For a root /3 of G we denote by [/̂  the corresponding
one-parameter unipotent subgroup of G normalized by T, and the root
subspace L'ieU/3 of Q by u^. The members U^{^\ where ^ e A:, of U/3 are
called rw^ elements,

Suppose that G is simple (over its center). A prime is said to be
bad for G if it divides the coefficient of a simple root in g, else it is called
good for G [37, § 1,4]. Furthermore, we say that a prime is very bad for G if
it divides a structure constant of the Chevalley commutator relations for G.
Thus, i fp is very bad for G, there are degeneracies in these relations. This
only occurs i f p = 2 and G is of type Bri C^, ?4, or (^2, or p = 3 and G is of
type G'2 • The same notions apply to reductive groups by means of simple
components [39, 3.6].

We may assume that each parabolic subgroup P of G considered
contains B.

Let N be a closed connected normal subgroup of P in P^. Since N
is normalized by T C P, z.e., N is T-regular [II], the root spaces of n
relative to T are also root spaces of Q relative to T, and the set of roots
of N with respect to T, denoted by ^(N), is a subset of <&. Suppose
that ^(TV) is closed under addition in ^. Note that this is automatically
satisfied provided p is not very bad for G. Then n = ©u/3 (/3 G ^(TV)) and
consequently, N = Y[ Up, where the product is taken in some fixed order
over ^(7V). The support of an element x in N , denoted by supp.r, consists
of all roots f3 for which the projection N —> U^ is nontrivial when evaluated
at x.

By the shape of a root f3 = ̂ ncr(f3)o~ (a- G S) relative to P, we mean
the sub-sum over the elements of S(P^) = ̂ {Pu) H ̂  and by the level of/3
relative to P, the sub-sum of the coefficients ria(0) over the same set S(P^),
cf. [1].
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The descending central series of Pu is defined as usual by C°Pu '' = Pu
and C^Pu: = (C'Pu.Pu) for i > 0. Since Pu is nilpotent, the smallest
integer m such that C^Pu = {e} is the class of nilpotency of Pu, i.e., the
length of this series, and is also denoted by £{Pu)- If P is not a very bad
prime for G, then ^l(C^Pu) consists precisely of all roots whose P-level is
at least % 4-1, see [1].

Throughout, we use the labeling of the Dynkin diagram of G (i.e.
of S) as well as the notation for roots in systems of exceptional type as in
Bourbaki [3]. Our general reference for algebraic groups is BoreRs book [2].

3. The maximal normal abelian subgroups of
Borel subgroups.

In this section we determine all maximal closed connected normal
abelian subgroups A of our fixed Borel subgroup B of G and record them
in the subsequent table. Here we specify the roots a such that A is the
normal closure in B of the corresponding root subgroups U^. The fact
that A is abelian follows either from the observation that the sum of two
roots in ^(A) is not a root, because it exceeds Q in some coefficient, and
thus, by the commutator relations, A is commutative, or else because p is
a very bad prime for G leading to commutation degeneracies. As indicated
in the table, some extra cases do occur for very bad primes.

The simple roots o~i are labeled as in [3]. Moreover, we use the
following abbreviations: in type Br set

ft = ̂ l + • • • + cr,, 7, == cr,-i + 2<7, + • • • + 2ov, ^ = a, + • • • + a^,

where 2 < i <^ r, and finally rj = f3r + o-r. Similarly, for type Dr we define

A = cr! + • • • + °^ 7i = ̂ i-i + 2a, + • • • + 2a^_2 + Or-\ + (Jr

for 3 < i < r - 2 and

f3 = (3r-2 + CTr-1, 7 = ftr-2 + ̂ r, S = (7r-2 + ̂ r-1 + ̂ r'

The normalizer of A in G is a parabolic subgroup of <7, since it
contains B. In the third column of Table 1 we indicate the set of simple roots
of the standard Levi subgroup of A^(A). Here the notation {a^a^...}
simply means S \ {ai, a^, •..}. Finally, we list dim A in each instance.
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THEOREM 3.1. — Let G be a simple algebraic group. Every maximal
closed connected normal abelian subgroup of the Borel subgroup B of G is
listed in Tablet.

Proof. — First we assume that p is not very bad for G. Then, our
aim to determine each maximal closed connected normal abelian subgroup
A of B is equivalent to the purely combinatorial task to determine all
maximal abelian ideals ^(A) in ^(J3) (i.e., all those ideals I of ^(B) which
are maximal with respect to the property that no two roots in I sum up to
a root in ^). If A is the normal closure in B of a single root subgroup U^,
then 2a exceeds Q in some coefficient, because of the commutator relations
for root subgroups in A. This quickly leads to a complete list of all the
maximal ^(A)'s of this nature. If A is the normal closure of two distinct
root subgroups, then the normal closure of each one of them is abelian
and no sum of any two roots from the supports of these two subgroups
is again a root. One checks that while in type Ar or Cr any such A is
already contained in one of the first kind, in type Br and Dr there are
new occurrences of the second type which are not contained in ones of
the first kind. The maximal ones then are easily determined which lead
to the families in the second entry for Br and the third one for Dr. As
indicated, there are also new cases here for the exceptional types. Abelian
normal subgroups which are the normal closure in B of three distinct root
subgroups and which are not already contained in one of the first two kinds
only arise in type Dr, EQ, £'7, and Es. There are no maximal incidences for
any type when ^(A) is generated by four or more distinct roots.

For the exceptional groups these records were obtained with the aid
of a computer algorithm which, for any given G, computes all maximal
abelian ideals of ^(B). Consequently, as the rank of G is bounded in these
cases, this yields the desired subgroups A in B in these cases.

Now we consider the situation when p is a very bad prime for G.
Here we can only have additional cases when there are two root lengths
in ^. Since in characteristic 2 the simple groups of type Br and Cr are
isomorphic as abstract groups [38, Thm 28], it suffices to only list the new
occurrences for type Br. In type Cr we only record the single generic case.
For Gs there is only one additional occurrence for p == 3 (none for p = 2).
One checks these remaining events directly.

Note, if I is the ideal in ^(B) generated by some positive roots,
then ̂ , for some 767', need not be contained in the normal closure of the
corresponding root subgroups in B, because of commutator degeneracies in
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the presence of very bad primes. This necessitates that in some of the cases
in Table 1 we have to include additional generating roots. For instance, this
is the case for G^ and in the third instance for F^. This is not required in
the third case for Br, as the structure constants of the commutator of the
root subgroups relative to the simple roots in a group of type B^ are all
equal to ±1, e.g., see [38, Lemma 33].

The last entry for Br is the only event when ^(A) fails to be an ideal
in ^+. Observe that the roots Oz-\ and 61 form a basis of a subsystem of
^ of type B^. Thus by [38, Lemma 33] 7z = a^-i + 2^ is in ^(A) in this
instance. Whence, if p = 2, the subgroup from the second entry for Br is
properly contained in the one from the fourth case (for a fixed %). D

Remark 3.2. — Suppose that p is not a very bad prime for G. Let
A be as in Table 1 below. Let Nc{A) = P = LPu with standard Levi
subgroup L. The simple roots S(L) canonically define a grading of g as
follows [15]: Define a function d: ̂  —^ Z by setting d{a) : = 0 if a is in S(L)
and d(a): = 1 if a is in E \ S(L), and extend d linearly to all of ^. Then
we define

0( .̂

@ Ua, for i ̂  0;
d(a)=z

t® (6 UQ, for i = 0.
d(a)=0

Thus we have Q = ©flOQ and moreover,
i

p-d)^) and pn-S)^)-
i>0 i>0

D. Panyushev observed that for each A from Table 1 below d(o) is odd
and for m = [j^(^)] + 1 we have Lie A == (j) ^(z). Using the description

i>m

of P furnished in the third column in Table 1, the value of d{o} is readily
determined.

Remark 3.3. — It is interesting to observe that if p is not very
bad for G, then the number of closed connected maximal abelian normal
subgroups of B equals the number of long simple roots of G.

Unfortunately, our proof of Theorem 3.1, involving case by case
considerations, is less than satisfactory. It would be very desirable to have
a uniform proof of this result given that p is not a very bad prime for G.
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Type of G

Ar CTi (1

Br (TI

A,'7i

Or (P

ftA,

Cj- 0V

Dr O-i

OV-i,

^i

^7^

EG o-i, or

01210i
mio,

0^11,

1 1 1 1 1 ,
0

ET 0-7

122100
1

012210
1

012221,

012111,

001111,

012211,

A

< i < r)

(3 < i < r) (p / 2)

=2)

77 (1 < z < r) (p = 2)

or Or

(3 < z < r - 2)

^6

01221
1

12210
1

01211, 11210

122110
1

123210
1

123210
2

122210,122111

Nc(A)

^
^
^<
<
^
<
^
ff'r-1, Or (T .̂

^

^l^'r-l^'r

ff'i, or 0-6

<

^-0-5

^s^'e
a11V^•,oc,

a1,

^

^

^^G

^CT'7

0-2,0-^

a3^^c^^

dim A

i{r - i-\- 1)

2r-l

\ (4r + z2 - 5z + 2)

J^+r)

j (4r + z2 - 3z)

j^+r)

2r-2

j^-r)

j(4r-5z+z2 )

j(r2-3r+6)

16

11

13

13

12

27

17

20

18

20

22

19

Table I (first part): the maximal normal abelian subgroups
ofBorel subgroups
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Type of G A Nc(A) dim A

ES 0122221 0^ 29

1233210 (75 34

1232100 02 36

1122221,2343210 0^, 0^ 30

1222221, 1343210 ^^ ^1

1232221,1243210 ^4^ 32

1 2 ^2^6

1233221, 1232221, 1233210 O^O^O^ 33

F4 1220 0-2 8

1221,0122 (p^2) 0-1,03 9
0121,0122 (p=2) ai,a2 11

1111,0122 (p=2) 02,03 11
G2 21 (p^3) 02 3

11,21 (p=3) 0 4

Table I (second part): the maximal normal abelian
subgroups ofBorel subgroups

4. Spherical Levi subgroups.

The following basic result is due to Brion [4] and Vinberg [42] in
characteristic 0 and in arbitrary characteristic to Knop [17, 2.6].

THEOREM 4.1. — Let G be a reductive algebraic group and B a
Borel subgroup of G. Let X be an irreducible G-variety admitting a dense
B-orbit. Then B has finitely many orbits on X.

A closed subgroup H of G is called spherical if H has a dense orbit on
G / B ^ or equivalently, if there is a dense B-orbit on G / H ^ or equivalently,
by Theorem 4.1, if there is a finite number of B-orbits on G / H . Concerning
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recent results on spherical subgroups in positive characteristic, consult [7].
The associated spherical varieties G / H have been studied extensively in
the literature; see [6] for a survey.

In characteristic 0 all reductive spherical subgroups have been
classified in [20], [5], and [23]. When p ^ 2 many instances are known
as centralizers of involutions by a result of Springer [36]. Brundan's method
of "integral embeddings" [7, § 2] and the representation theoretic fact that
Levi subgroups of G are good filtration subgroups (see [10], [22]) enable him
to extend the classification of spherical Levi subgroups from characteristic
zero [20] to arbitrary characteristic [7, Thm 4.1]:

THEOREM 4.2. — Let L be a Levi subgroup of G. Let G = n Gi

as a commuting product of simple factors and L, := L H d. Then L
is spherical if and only if, for each z, either L, = d, or (G^Z^) is
02ieof(A,,A^A_^_i), (B,,B,_i), (B,,A,_i), (O.O-i), (O.A^-i),
(A-^r-l), (A^-i), (^6,^5), OT{E^EQY

Theorem 4.2 and the next result [5, Prop. I.I] (or [7, Lemma 4.2])
yield a classification of all parabolic subgroups P = LPu of G for which
a Borel subgroup BL of L has a dense orbit on Pu, whence finitely many
orbits thanks to Theorem 4.1.

LEMMA 4.3. — Let P = LPy, be a parabolic subgroup ofG and BL a
Borel subgroup ofL. Then L is spherical in G if and only if there is a dense
B^-orbit on Pu.

Remark 4.4. — A Levi subgroup L of P is spherical in G if and only if
either Pu is abelian, or p ^ 2 and one of the pairs (G^, L\) as in Theorem 4.2
equals (Br.Ar-i) or (Cr,Cr-i). This is immediate from Theorem 4.2 and
the well-known instances when Pu is abelian, e.g., see [29, Rem. 2.3] when
p is not very bad for G. In this latter case, Vavilov gave a direct proof of
the finiteness of the number of ^-orbits on Pu in [40, § 4].

5. Proof of Theorem 1.1.

Clearly, we may assume that G is simple (over its center) and that A
is a maximal closed connected abelian subgroup of Bu normalized by B.
We have compiled all possibilities for such A in Table 1 in Section 3
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above. Since A is B-invariant, the normalizer of A in G is parabolic in G.
Throughout this section, we write P = LP^ for Nc(A) with standard Levi
subgroup L.

5-3- — By inspection of the list in Theorem 4.2, one checks that
in each of the cases in Table 1 where A is generated by a single root
subgroup relative to a simple root A is contained in the unipotent radical of
a parabolic subgroup Q = MQu of G whose Levi subgroup M is spherical
in G. Hence, by Lemma 4.3 and Theorem 4.1, BM and thus B act on Qu
and thus on A with a finite number of orbits. In fact, in each of these
events Q = P and A = Qu. In particular, this covers all instances for A^,
Gr, and the first entries for Br, Dr, EQ, and £7. Also, if G is of type Br
and A is generated by the root subgroups relative to (3r and 7^, then A
is (properly) contained in the unipotent radical of the maximal parabolic
subgroup Q of G corresponding to S \ {oy}. Here Nc(A) is of semisimple
corank 1 in Q. This corresponds to the third case listed in Theorem 4.2
which equally applies when p = 2 and then, Qu itself is abelian. This leads
to the third Br entry in this table.

5.2. — Now we turn to the remaining cases in Table 1. Here we
cannot appeal directly to the results from Section 4. However, a construction
from [1] allows us to apply these results in part. Throughout this paragraph,
suppose that p is not a very bad prime for G. In each of the cases we are
concerned with A=CSPu for some s > 1. For each z e N define

V,: =CS+^~lP^/Cs^iP^

Because A is abelian, we may regard each Vi as a subgroup of A. Let

t: =£(P^)-s.

Then Vt = Z{Pu) is the last term in the descending central series of Pu. By
the commutator relations for G, each root in ^/(Vi) is of P-level s 4- z. Let
5,1, 5'?,... be the different shapes among roots of P-level s+i. For each shape
5^ there is a unique root o^ in ^(V,) of minimal height of that shape. Let V^
be the product of all the root subgroups of shape Sf. Then each V^ naturally
is an L-module of lowest weight a^ and as L-modules Vi ^ V1 © V 2 . . .
cf. [1]. In particular, V^ is the product of all root subgroups of shape S^ and
Vi is the product of all root subgroups of level s + i. Denote by ^, the set of
all roots whose shapes are integral multiples of all the occurring shapes S71
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of level s + i. This is a closed semisimple subsystem of ̂  and it contains
^(L) (the set of roots of shape 0) as a subsystem, since its elements are all
multiples of the various S^s modulo the integral span of ^{L). Thus the
positive simple system S^ for ̂  consists of S(L) and the a^s for n >_ 1.
Since 2S^ is not the shape of any root in ^, the union of d=^(l^) and
^(L) equals ̂ i. Therefore, if Gi is the connected reductive subgroup of G
corresponding to ̂  (i.e. ̂ (Gi) = ^i) and containing the maximal torus T,
then Pi: = LVi is the standard parabolic subgroup of Gz corresponding to
S(L) with unipotent radical Vi. The number of simple components of G[
equals the number of different shapes S^ of level s + i. Since Vi is abelian,
L is a spherical Levi subgroup of Gi by Remark 4.4. Thus, the previous
results applied to Pi = LVi in Gi yield that BL has a finite number of orbits
on Vi for each i = 1, . . . , t. Therefore, since A == Vi • • • Y(, we are able to
conclude our desired finiteness statement, once we have proved that

( there are only finitely many 5-orbits passing through each
(f) coset of the form vVi • • • V^, where v is in Vi-\ \ {e}, for

1 < i < t.

As B = B^Pu, one method to establish this is to (possibly) first
replace v by a suitable B^-conjugate v ' of v and then to show that each
element in v'Vi • • - Vf is already conjugate to v ' under Pu. Since Pu is
connected and unipotent, it has a finite number of orbits on v ' V i ' • • Vf
precisely if this coset is a single P^-orbit [33]. Sometimes another way to
establish (f) is more convenient. Since B = TB^ we first aim to show that
an element of vVi • • ' Vt is ^-conjugate to an element x which is supported
by at most rankG linearly independent roots. Then (f) follows, as each of
the coefficients in the root elements of x can be scaled to 1 using the action
of T in this event. We combine these techniques with inductive arguments
below.

5.3. — We first attend to the remaining classical occurrences.
According to 5.1 the only ones left here are the second and fourth entries for
Br as well as the last two for Dr. Here we use the notation from Section 3.

5.3.1. — Let G be of type Br and let A be the normal closure in B
of U^ and U^, where 3 < i < r and suppose that p ^ 2. Then A = C1?^,
t = 2, and S(L) consists of all simple roots but a\ and o^, i.e., L' is of
type Ai-^Br-i. If i •== r, then L is of type Ar-2. But this case was already
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discussed in 5.1. There are precisely two different P-shapes of roots of
P-level 2 and the unique roots of minimal height of these two shapes are
f3i and 7, respectively. Note that Gi is of type D^Br-w and Pi = LV^
is the parabolic subgroup of Gi of semisimple corank 2 corresponding to /^
and 7,. Written additively, Vi is the sum of the alternating square of the
natural module of the A,_2 component of L' (denoted here by V2) and of
the natural module for the Br-z factor (V^-). The unique root of minimal
height of P-level 3 is e,: = ̂  + ̂ , and G^ is of type A^Br-i with simple
positive system S(L) U {ej. Here V^ is the natural module for the A,-2
component of L' with the second component of L acting passively. We
summarize this information in the following figure. Here we indicate S(L)
by coloring the corresponding nodes in the diagram of G, likewise for Gi
and G'2.

G,P: 0——•---—-•——Q——•--— —•==>• ^(PJ=3
1 2 i-1 i i+l r

<^2,P2: 0———•--------• ^---------------^=^

Ci i-1 2 i+l r

Thus A = V^V'2 and £^ has a finite number of orbits on each Vi
by 5.2. Let v = v'^v2 be in Vi \ {e}, where ^n € y^ for n = 1, 2. If v1 = e,
then t;V2 = v^V^ is contained in the unipotent radical of the parabolic
subgroup of G corresponding to S \ {ar} (as every root in suppv2^ has
coefficient 2 at cr^). Ifv2 = e, then vV^ == v1^ is contained in the unipotent
radical of the parabolic subgroup of G corresponding to S \ {0-1} (as every
root in suppz^Vs has coefficient 1 at o-i). In each one of these cases,
the desired finiteness statement follows from 5.1. Now we may suppose
that v1 ^ e ^ v2. But then every element in vV^ is P^-conjugate to v:
Let x = vlvt2xl be in vV^ with x ' C V^ and let r be a root of minimal
height in suppv2. Then for each root v in ^(^2) there is a unique root ^
in ^(Pu) such that r-\-p, = y . By induction on height we can thus remove x '
completely using the action of root elements in U^. Since a\ is a summand
of /^, any such operation fixes v1, and thus x is indeed P^-conjugate to v
in this event. Thus (f) is fulfilled. This completes the argument for the
second Br entry.
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Next we address the fourth entry for Br. So here p = 2 and A is the
normal closure in B of U^, Us,, and U^, where 2 < i < r - 1. Recall that
here ^(A) is no longer an ideal in ^(B). Let x be in A. If there is no f3j
in supp a* for i < j < r, then a; is contained in the unipotent radical of
the maximal parabolic subgroup corresponding to S \ {ar} (as then every
root in supp a* has a non-zero coefficient at Or). By 5.1 there is a finite
number of B-orbits in A of this nature. So we may suppose that there is
a /3j in suppa; for some i < j < r. Without loss, we may suppose that /3j
is the unique such root of minimal height in supp a*. Any of the remaining
roots in supp x with coefficient 1 at 0-1, which is either /3r or long, can then
be removed from supp a; by applying suitable root elements from Bu to x.
Thus we may suppose that we have an orbit representative of the form
x = U^^^x' (^ C A;*), where all roots in supp a;' have coefficient 0 at ai
and a non-zero coefficient at Or. Let H be the simple subgroup of G of type
Br-i defined by the simple system E' = S \ {ai}. Then x ' belongs to the
unipotent radical of the maximal parabolic subgroup Q of H corresponding
to E' \ {or}. By Theorem 4.2 the Levi subgroup M of Q is spherical in H
and thus x ' belongs to a finite set of orbits in A of the Borel subgroup BM
of M. By the nature of the root system ^(A) and since p = 2, any two
elements in Qu FlA which are (BM ̂ -conjugate are conjugate by an element
of (BM^U which fixes the factor U^ (^) of x. Since the maximal torus in BM
normalizes £/^, its action on the factor L .̂ ($) of x merely may result in a
different coefficient C € k * . Hence we may assume that x ' belongs to a finite
set of £?M-orbit representatives in Qu H A. Note that each root in supp x '
is orthogonal to /3j. Thus we may use the 1-dimensional torus 5' associated
to f3j to scale the coefficient ^ to equal 1. Ultimately, there is only a finite
number of B-orbits on A in this instance as well.

5.3.2. — Next we treat the cases left for type Dr (r >_ 4). The
finiteness result for the first two entries follows from 5.1. The argument for
the third entry in Dr is completely analogous to the second case for Br. We
leave the details to the reader.

In the last entry for Dr in our Table A is the normal closure in B of U/s,
U^, and Ug. Here we have A = C1?^ and S(L) = E \ {cri,ov_i,ov}, i.e.,
L' is of type A^-s. There are three different P-shapes of roots of P-level 2
and the unique roots of minimal height of these shapes are precisely /?, 7,
and 6, respectively. Note that Gi is of type A^A^Dr-2 and Pi = LV\ is
the parabolic subgroup of G\ of semisimple corank 3 corresponding to /?, 7,
and 8. Written additively, V\ is the sum of two copies of the trivial module A;,
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one for each A\ component (these correspond to (3 and 7, respectively, with
L acting by scalars), and the alternating square of the natural module of
L' = Ar-3. The unique root of minimal height of P-level 3 is e: == f3r-3 + ^
and G'2 is of type Ar-2 with simple positive system S(L) U {e}. Here V^ is
the natural module for V ' . We collect this data in our next figure.

1 2

,• r-2

GI,PI : 0 0 •-
/3 7 2

G2,?2 : 0———^--————-——-——-——-- -——•
e r-2 2

So, A = ViVs and by 5.2 there is a finite number of ^-orbits
on each Vi. Let v be in V\ \ {e}. If /? and 7 are not in suppv, then
vV-z is contained in the unipotent radical of the parabolic subgroup of G
corresponding to E \ {(Tr} (^ then every root in SMppvV^ has coefficient 1
at oy.), and it follows from 5.1 that there is a finite number of IP-orbits
passing through vV^ in this instance. On the other hand if either (3 or 7
is in suppv, then each element in vV-z is P^-conjugate to v: Let vx' be
in vV^ with x ' e V^. Without loss, suppose that f3 G suppv. Then for each
root v in ^(V^) there is a unique root p, in ^(Pu) such that /3 + ^ = ^.
By induction on height we can thus remove x ' completely using the action
of root elements in Up,. Observe that, since /3 has coefficient 0 at cr^, each
root [i involved has coefficient 1 at <7y.. Thus each operation by a root
element from Up, on vx' fixes the other factor of v (as it consists of root
elements whose support involve o~r as a summand), and so x is P^-conjugate
to v in this case. Thus (f) is satisfied.

We have now established Theorem 1.1 in all classical instances.

5.4. — We now address the bulk of the exceptional cases, the ones
not covered by 5.1. For that purpose we consider the following condition:
suppose that t = 2 (z.e., A = V^V^):
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Suppose that for every pair of roots (/?, 7) in ^(Vi) x ^(V^)
the difference 7 — /? is again a root in ^ (%.e., in ^(P^)) and

(<$») ^ moreover, if this is the case, then we further assume that
for any two roots f3\ and /3^ in ^(Vi) of the same height,
7 — f3\ + 02 is not a root for any 7 6 ^(Va)*

5.4.1. — If (<0>) is satisfied and char A: is not very bad for G, then
every B-orbit passing through an element of A = V-]_Vz with nontrivial
support in V\ already has a representative in V\. The second condition
in (Q) ensures that every V^-factor can be removed using a succession of
conjugations by suitable root elements in Pu arguing by induction on the
height of the roots in ^(V^). Then, since BL has a finite number of orbits
on V\ and on V^ there is a finite number of B-orbits on all of A == V^V^.
The advantage of (0) is that it is a purely combinatorial condition.

One checks that in the exceptional cases with t = 2 the conditions
in (<()) are satisfied precisely in the second EG and £"7 instances, as well
as in the first entries for Es, ?4, and G^. Thus, our finiteness result follows
in these instances provided p -^ 2 if G is of type F^ or p -^ 3 for G^. Note
that for Gs only the prime 3 leads to an obstruction here. But in the first G^
entry in Table 1 we require that p ^ 3.

5.4.2. — We proceed with the remaining entries for EQ. By 5.1
and 5.4.1 the finiteness result holds for the cases from the first two entries.
Recall that we set P = LPu = Nc(A). In the third case S(L) = S\{ai, (75 };
in particular, L is of type AlAs, A = C1?^, and t = 2. Let a\ = 11^10 and
a{ = oml. These are the unique roots of different P-shapes and minimal
height of P-level 2. Note that V^~ is the tensor product of the natural
modules for the simple factors of L' and Vf = k, while V^ is the dual
of the natural module for the As-component of L ' . Thus dimVi = 9 and
dimVa = 4. Let v be in V\ \ {e}. We consider the set of B-orbits passing
through vV^. Let N be the intersection of A with the unipotent radical of
the parabolic subgroup corresponding to S \ {ai}. Then A = U^N and
B acts on N with a finite number of orbits, by 5.1. Thus we may assume
that a{ is in suppv. But if a{ € supp^, then every element in vV^ is
P^i-conjugate to v: Let vx' be in vV^ with x ' € V^. One checks that for each
root y in ^(Vz) there is a unique root ^ in ^(Pu) such that o^ + {ji = v.
By induction on height we can thus remove x ' completely using the action
of root elements in U^. Observe that, since a^ has coefficient 0 at (TI, each
root fi involved has coefficient 1 at (TI. Thus each operation by a root
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element from U^ on vx' fixes the other factor of v (as it consists of root
elements whose support involve o-i), and so x is P^-conjugate to v in this
case, as claimed. Whence (f) is fulfilled.

Since the subgroup A from the fourth case for EQ is conjugate to
the one from the third entry by the graph automorphism of G, the result
follows readily from the previous discussion by duality.

For the final entry for EQ we have E(L) = {(72,0-3,0-5}; in particular,
L is of type A^, A = C2?^, and t = 3. The three "generating roots" for A
are precisely the unique ones of minimal height and distinct P-shapes of
P-level 3. Observe that V\ is the direct sum of three copies of natural
modules for the three Ai-factors of V ' . Thus dimYi = 6, dimV2 = 4,
and dimVs = 2. Let v be in Vi and write v = vlv2v3, where ^n e V{1

for n = 1,2,3. Let N be the intersection of A and the abelian subgroup
studied in the second case. Then A = U^iU^i^^N and B acts on N with a
finite number of orbits by 5.4.1. Thus we may assume that supp2;1 consists
of just one root, i.e., either a\, or a\ +02. Furthermore, we may also
suppose that both v2 ^ e and v3 -^ e, as otherwise vV^V^ is contained in
the unipotent radical of the maximal parabolic subgroup corresponding to
^ \ {^iL respectively S \ [ae}, and thus again, there is a finite number of
B-orbits passing through vV^V^ by 5.1 in this event. One checks that under
these assumptions every element in vV^V^ is conjugate to v under Pu: Let
x = vlv2v3xf be in vV^V^ with x ' e V^V^. Since each of the modules V^ is
the natural representation for one of the Ai-components in L', the support
of each v71 consists of at most two roots for each n = 1,2,3. While fixing
the factor v2v3 all roots in suppa/ except Q or g — 0-2 can be removed
acting suitably on v1. The factor v2v3 is fixed by this procedure, as each
of the roots involved in the conjugation has coefficient 0 at o-i and at OQ.
Furthermore, the single remaining root element in x ' can be removed acting
on v2 while fixing vlv3 (as the conjugating root has o-i as a summand).
Hence we have established (f).

5.4.3. — The desired finiteness result for the first two cases for £7 was
established in 5.1 and 5.4.1. We now treat the 5 remaining ones in a similar
inductive manner as for EQ. For A in the third entry S(L) = S \ {0-5},
so L is of type A^A^, where A = C^Pu, and t = 2. Here Vi is the tensor
product of the natural modules of the simple components of L' and V^ is
the dual of the natural module of the A4-factor of L ' . Thus dimYi = 15
and dim V-2 •== 5. Suppose that v is in Vi \ {e}. We may assume that there
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is at least one root in suppv with coefficient 0 at 07 (there are 5 such
roots), as else vV^ is in the abelian subgroup treated in the first case. In
fact, we may suppose that there is precisely one such root in suppv, the
one of minimal height. The other ones can be removed using suitable root
group elements from (B^u- Moreover, we may suppose that there is a root
in suppv whose coefficient at 03 is 1, (there are six such roots), as else
vV^ is contained in the subgroup considered in the second case. With these
constraints one checks that either every element in vV^ is conjugate to v
under Bu-s or else the support of an orbit representative consists either of
omio g^j ^ ̂  Q^ imio g^ ^ _ ̂  Then, using the action of T, we can
scale the coefficients of the associated root elements to equal 1 in each
event. Whence the condition in (f) is satisfied.

For A from the fourth entry for E-j we have S(L) = E \ {03, ere}, so L
is of type A^A^, A = C2Pu, and t = 3. Observe that the two roots defining
A are the unique ones of minimal height of P-level 3 and different P-shapes,
so we denote them by a\ and a{ respectively. Let v be in Vi with v = vlv2,
where v71 G V^ for n == 1,2. Let N be the intersection of A and the abelian
subgroup studied in the second E-j entry. Then A = U^iU^i^^N and B
acts on N with a finite number of orbits by 5.4.1. So we may suppose
that v1 7^ e. More specifically, we may assume that supple consists of
either o^, or a\ + 01. Moreover, we may also assume that there is one
root in suppv2 whose coefficient at (75 is 1 (there are two such roots),
as else vV^V^ is contained in the abelian subgroup from the third entry.
This leads to a small list of possibilities and one checks that in each one
of them any element in ^V2^3 is conjugate to v under P^, and so (f) is
satisfied: Let x == vx' be in vV^V^, with x/ G ^2^3- Then one checks that
all roots in suppa/ can be removed except possibly one (it is either ^, or
Q — oi, depending on the single root in suppv1). However, since supp^ also
contains roots with coefficient 1 at 05, the single root possibly remaining in
supp^7 can be removed without reintroducing any new ones. Thus x = vx'
is B^-conjugate to v in this event. We have established (f) also in this case.

Next we consider the sixth case for £'7. Here S(L) = S \ {02,0-7},
so L is of type As, A = C^Pu, and t = 2. Let v = v^-v2 be in Vi \ {e}.
Note that Vf is the trivial module A:, and thus supp v2 consists of at most
one element. If a{ = :m210 is not in suppv, then vV'2 is contained in the
unipotent radical of the maximal parabolic associated to S \ {07} and we
are done. Else, (z'.e., when v2 7^ e) every element in vV^ is P^-conjugate
to v itself: Let x be in vV^. For every root v in ^(V^) there is a unique root
^ in ^(Pu) such that a{ + ^ = v. By induction on height we can remove
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the factor of x in V^ completely using the action of suitable root elements
in Up,. Since 0-7 must be a summand of /^, any such operation fixes the
factor v1, and thus x is indeed P^-conjugate to v in this instance.

Now let A be as in the fifth entry for ^7. Here S(L) = S \ {0-4,0-7},
so L is of type AiA|, A = C2Pu, and t = 3. The two roots defining A are
the unique ones of minimal height of P-level 3 and of different P-shapes.
We denote them by a\ and a{ respectively. Let v be in Vi with v = vlv2,
where v71 € V{1 for n = 1, 2 and let x == vx' be in vVzV^, with x ' e V^s-
Let TV be the intersection of A and the abelian subgroup from the sixth £7
entry just treated. Then A = U^N and B acts on TV with a finite number
of orbits by the result of the previous paragraph. So we may suppose that
a{ = suppz;2. Observe that all but possibly three roots can then already be
removed from suppa;'. Furthermore, we may assume that there is precisely
one root in supp'y1 whose coefficient at 05 is 1 (there are three such roots,
and those of larger height can be removed using root elements from (BL)u)i
as otherwise vV-^V^ is contained in the abelian subgroup treated the third
case. One checks that then the two roots of smaller height of the three
possible remaining ones in suppa/ can be removed without introducing
any new ones. If there are any other roots left in supp'y then the final
possible root remaining in suppa/ can also be removed and consequently
x is B^-conjugate to v. If there are no further roots in suppz;, then x is
supported by at most three linearly independent roots. Once again this
establishes (f) in this instance.

Finally, we address the last E-j entry. In this case S(L) =
{0-1,0-2,0-4,06}, so L is of type A^A^, A = C3Pu, and t = 4. Let v be
in Yi. Let V = V^V^V^. We may suppose that 122111 is in supp^ (note
V^ = k), as else vV is contained in the subgroup we studied in the third
case (this also applies for v = e). Furthermore, we may suppose that there
is a root in suppv whose coefficient at 0-3 equals 1, else vV is contained
in the abelian subgroup from the second entry (there are four such roots).
These two conditions together already lead to a small list of possible
configurations in this event, and it turns out that then every element in vV
is already P^-conjugate to v: Let x = vx' be in vV with xf e V . Since mln

is in supply all but possibly one of the roots in supprr' can be removed
using root subgroups from P^. The remaining root in suppa/ can then be
removed by acting on one of the root elements in v relative to a root with
coefficient 1 at 0-3 without introducing any new roots from ^/(V). Thus we
have (f) also in this case. This completes the discussion for Ej.
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5.4.4. — For Es the finiteness result for the first case follows from 5.4.1.
We treat the remaining 7 cases again in the same inductive manner as done
for EG and £7. In the second case S(I/) = S \ {(75}, so L is of type A^A^
A = C^Pu, and t = 3. Here dimYi = 20, dim^ = 10, and dimYs = 4.
Let v-i be in V\. We may suppose that there is a root in supp^i whose
coefficient at 07 equals 1, as else viV^Vs is contained in the subgroup from
the first case (also for v\ = e). There are ten such roots. Using the action of
(B^u w^ may suppose that there are at most two such (orthogonal) roots
in supp^i. Let x = v-^v^v^ be in ViV2^3? where vi C Vz for i = 2,3 and
^2^3 T^ 6. One checks that for a fixed (3 € ^(Vi) there are precisely four
roots 7 € ^(V^) such that 7 — (3 is not a root and there is precisely one root
6 6 ^(Vs) such that 8 — (3 is not a root in ^. Let T be a root in the support
of v\ of minimal height and with coefficient 1 at 07. Thus, we may assume
that all roots of the form r-\-r] with 77 e ̂ (BL) have been removed from the
support of Vi and that v^ consists of at most four root elements and that
either v^ = e, or 1:3 is a single root element (using the action of Pu). If there
are no further roots in the support of v\, then x is supported by at most
six linearly independent roots and we can use the maximal torus T in B to
scale the coefficients in the remaining root elements of x to equal 1. Now
suppose there are two (orthogonal) roots in supp 1:1 each with coefficient 1
at 07, say T and 7, and that all roots of the form r + T] with rj € ^(B^)
have been removed from the support of 2:1, likewise for 7. Then all of the 5
remaining roots but possibly one in supp v^ can be removed from supp ̂ 2^3
without introducing any new roots. If there are no further roots in supp^i,
then x is supported by three linearly independent roots. Furthermore, if
there are still any additional roots in suppz^i (necessarily orthogonal to r),
then (using the action of Pu) we can remove the final root element factor
from v^ without reintroducing any new root elements or ones which have
already been removed. Thus, in this latter instance we are left with an orbit
representative in V\. Consequently, we have a finite number of B-orbits on
all of A = V^Vs, as desired.

For A as in the third entry S(L) = S \ {(72}, so L is of type A7,
A == C^PU-, and i = 2. Here V\ is the alternating square of the natural
module of A7, thus dimYi = 28 and V^ is the 8-dimensional natural A7-
module. Let v be in Vi. We may suppose that there is at least one root
in suppv whose coefficient at (75 is 2, as otherwise vV^ is contained in the
subgroup studied in the second case. There are just six such roots in ^(Vi).
We may further suppose that there are at most two such orthogonal
roots in suppz». If needed, the other four can be removed using suitable
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root elements from B^. Now let x = vx' be a jB-orbit representative in
A = V\V^ where xf e V^. One checks that for a fixed /3 C ^(Vi) there
are precisely two roots 7 € ^(V^) such that 7 — /? is not a root. Let 6 be
a root in the support of v with coefficient 2 at 0-5. Thus, we may assume
that all roots of the form 6 + rj with rj C ^(B^) have been removed from
the support of v and that x ' consists of at most two root elements. If
there is a second root in supp?; with coefficient 2 at 0-5 (orthogonal to 6),
then we can remove both remaining root element factors of x ' and thus
x is 2^-conjugate to v. So we may suppose that 6 is the single root in
supp v with coefficient 2 at 05. If there are no further roots in the support
of v, then x is supported by at most three linearly independent roots and
we use the maximal torus T in B to scale the coefficients in the various
root elements to 1 and obtain a single orbit representative. Furthermore,
one checks that if there are any extra roots in suppv, apart form the ones
already removed (z.e., necessarily orthogonal ones to ^), then we can remove
the factor x/ by conjugating with suitable root elements from P^, without
reintroducing any root factors which have already been removed and we
are left with an orbit representative in V\. Consequently, we have a finite
number of -B-orbits on A = V\V^ in each event.

Now consider the fourth case. Here S(L) = E \ {0-1,07}, so L is of
type AiD5, A = C2?^, and t = 3. Let v = vlv2 be in Vi. Note that V^ is
a 16-dimensional spin module for the I^-component of L' and V2 is the
natural module for the Ai factor. We may suppose that there is precisely
one of the two roots in suppv2 with coefficient 1 at 0-7, as otherwise vV^s
is contained in the subgroup studied in the first case (also for v = e).
In addition, we may suppose that there are roots in supp v whose coefficient
at 0-5 is 2, otherwise vV^V^ is contained in the subgroup from the second
case. Let x = vxf be in vV-^V^ with x ' C V^V^. Acting on v2 with suitable
root elements from Pu we can remove all but possibly one root from supp x ' .
This fixes the z^-factor, as each of the roots involved has coefficient 0 at o-i.
Acting on v1 we can remove this remaining root from supp x ' while fixing v2^
as any root element needed here has coefficient 1 at o-i and thus commutes
with v2. Therefore, these two conditions combined imply that every element
in vV^V^ is already conjugate to v under Pu and thus (f) is satisfied.

For the fifth Es entry S(L) = E \ {03,0-7}. So L is of type A^,
A = C^Pu, and t = 4. Let v = v^v2 be in Vi. We write V for V^V^
The two defining roots for A are the unique ones of minimal height and
different P-shapes of level 4. Note that dimVi = 14 and dimY =17. We
may suppose in this instance that there is precisely one of the two roots in
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the support of v2 € V2 with coefficient 1 at a\, as else vV is contained in
the subgroup treated in the fourth case (this also applies for the case v = e).
Let x = vx' be in vV with x ' G V. One checks that all put possibly six
roots in suppa/ can be removed acting on v2. In addition, we may suppose
that there is precisely one of the three roots in suppr1 with coefficient 2
at <75, as else vV is contained in the subgroup from the second case. Then
we may remove up to four more roots from suppa/. If there are no other
roots in suppa:, then x is supported by at most four linearly independent
roots, and we are done. Else, x is ^-conjugate to v, and (f) is satisfied.

If A is as in the sixth entry for Eg, then S(L) = E \ {0-4, cry}. So L is of
type A^Aj, A = C4?^, and t = 5. Write V for V-z • • • Vs. Let v = v^v2 be in
V\. The two defining roots for A are the unique ones of minimal height and
different P- shapes of level 5. Note that dim V\ = 12 and dim V = 20. Let
x = v x ' be in vV with x ' C V. We may suppose that there is precisely one
(of the two) roots in suppv2 with coefficient 2 at 03, as else vV is contained
in the subgroup studied in case 5 (this also applies for the case v = e).
Then we can remove all but nine roots from suppa/. Furthermore, we may
suppose that one of the two roots with coefficient 2 at 05 is in suppv1.
Otherwise vV is contained in the subgroup from in case 2. Acting on root
elements in v of the second kind we can eliminate up to another six roots
in suppa:'. If there are no additional roots in suppv, then x is supported
by at most five linearly independent roots and we may use the action of T.
Otherwise, all of the remaining roots in suppa;' can be removed, so that x
is conjugate to v under Bu, as desired.

For A from the seventh £'8 entry S(L) = S \ {(72, o-e}. So L is of type
AaA4, A = C^Pu, and t = 4. Write again V for V^V^. Let v = v1^2 be in
V\. We may suppose that there is precisely one of the three roots in supp v2

with coefficient 2 at 05, as else vV is contained in the subgroup studied
in case 2 (this also applies when v -==- e). Note that V^ = k. Moreover, we
may assume that a\ = 12^3321 ^g ^ gupp-y^ as otherwise vV is contained
in the maximal abelian subgroup from case 3. These conditions imply that
either an element in vV is P^-conjugate to v itself, or it belongs to a
jE^-orbit with a representative x in vV whose support consists of three
linearly independent roots, a}, Q — (ag + cry + erg), and one of a2, a2 + as,
or a2 + cry + o's • In each event we use the action of T to scale the coefficients
of the corresponding root elements to 1 and so (f) is satisfied.

Finally, we address the last Es case. Here S(L) = E \ {02, <75,07} and
L is of type A^As, A = C^Py,, and t = 6. Write again V for V^ • ' ' VQ. Here
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dim l^i = 11 and dimY = 22. Let v = vlv'2v3 be in V\ and as before let
x = vx' be in vV with a;' C V. Note that V^2 = k and so | suppv2] < 1. We
may suppose that a2 == 12^2221 ^g ^ suppv, as otherwise 'yV is contained
in the maximal abelian subgroup from case 2. This is the single root in
^(Vi) with coefficient 2 at 05. Acting on v2 with root elements from Pu
we can remove all but possibly up to eight roots from suppa/. Also, we
may suppose that there is precisely one of the two roots in supp v3 with
coefficient 3 at 04, as else vV is contained in the maximal abelian subgroup
from case 6. Then we can act on v3 and remove an additional four roots
from x ' without reintroducing any new ones. If there are no other roots in
suppv, then x is supported by at most eight linearly independent roots and
we are done using the action ofT. Otherwise, we can use other root elements
to completely eliminate x ' ^ and thus x is conjugate under Bu to v. This
completes the discussion for £'s.

5.4.5. — We proceed with the remaining events for F^. The desired
result for the first entry in Table 1 for F^ was established for p ^ 2 in 5.4.1.
First we consider the same instance when? = 2. As before, A = C^P^, where
P = Nc(A). Although (<C>) is satisfied, the commutator relations in F^ are
degenerate when p = 2 for short root subgroups spanning a subsystem of
^ of type ^2. Let v\ be in V\ \ {e}. We consider the set of B-orbits passing
through ^1^2- Since the two roots in ^(Vz) are long and there are no
degeneracies for the commutators of long root subgroups in ^(B), we can
argue as above, provided there is a long root in supply. Consequently, we
only need to consider the case when v\ is supported entirely on short roots.
Since any two short roots in ^(Vi) span a subsystem of Dynkin type A^
(and the structure constants in the corresponding group are d=l), we may
assume (possibly after using the action of {B^u) that v\ is a single short
root element. Thus, any element in v\V^ == ^1^1342^2342 is supported by
at most three linearly independent roots, and we can use the action of the
torus T in B to obtain a finite set of orbit representatives in this case as
well.

Next we turn to the remaining F^ cases. It is advantageous to first
consider a particular normal abelian subgroup of B which, although not
maximal, still fits the setting of 5.2. Namely, let V be the normal closure
in B of Us, where 6 = 0122. Let P = Na{V). Then P = LPu is the maximal
parabolic subgroup of G of type -03, V = Z(Pu), and dimY = 7. We can
apply the same construction as in 5.2. Let ^i be the closed semisimple
subsystem of ^ formed by ^{L) together with ±^/(V) and positive simple
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system consisting of S(L) and 6. Let G\ be the semisimple subgroup of G
corresponding to ^i. Then G\ is of type B^ and Pi = LV is the maximal
parabolic subgroup of G\ corresponding to the simple root 6. Since V is
abelian, L is a spherical Levi subgroup of G\ by Remark 4.4. Hence, -0^ and
thus B has a finite number of orbits on V. Note this is valid also for p = 2.

Now in the second F^ incident on our list A = ^1221^1231^- Thus,
by the last paragraph, it suffices to consider orbit representatives whose
support contains at least one of 1221 or 1231. One easily checks that there
is only a finite number of such B-orbits passing through A.

In the third case for F^ we have A = ^0121^1121 ̂ 1221 ̂ 1231^- As
above, we only need to consider elements whose support involves at least
one of the first four roots shown. Keeping in mind that p = 2 in this
instance, one checks directly that there is only a finite number of such
B-orbits in A.

The commutative groups from the last two F^ entries (both for p = 2
only) share the 10-dimensional normal subgroup of B which is generated
by ^1121 and £/oi22- Thus, by the previous result, in the fourth case we
only need to show that there are finitely many B-orbits passing through
elements in A whose support involves 1111. This is easily verified.

5.4.6. — Finally, the result for the second G^ case is readily checked
directly.

This completes the proof of Theorem 1.1.

We close this section by illustrating the construction from 5.2 once
again with two examples from Table 1, this time for exceptional groups.

Examples 5.5. — Our first example is the second entry for Es
from Table 1. The Levi subgroup of Nc(A) = P = LPu is of type A3A4,
£(Pu) = 5, A = C'2Pu, and t = 3. As shown, Gi is of type As, As^, or
A4A4 for i = 1,2,3, respectively. As before we indicate S(L) by coloring
the corresponding nodes in the diagram of G and Gi. Moreover, o^, dim V^,
and the various passive components of Gi are specified as well.

We also present the first case for F^. Here the Levi subgroup of Nc{A)
is of type AiA2, where A2 is the subsystem of ^ spanned by the short
simple roots, and G\ and G^ are of type A\C^ and A2A2, respectively.
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G, P : •——•——•——0——•——•——• ^(Pu) = 5
1 3 4 5 6 7 8

20

G?I,PI : ^——•——•——e——0——•——•——• al = 1233210^ dimVi = 20
1 3 4 2 oi 8 7 6

/•1

G-2,P2 '- •——•——•. •——•——• ^ = 1244321, dim V^ = 10
2 4 3 \^ 6 7 8

/ 0:2

Gs, PS : •——•——•——• 0——•——•——• as = 2465321, dim ¥3 = 4
1 3 4 2 0:3 6 7 8

1 2 3 4

GI.PI : • 0==>0——• ^1 = l^O. dimVi = 6
1 oi 4 3

G?2, ?2 : •——0 •——• ^2 = 1342, dimV2 = 2
1 0:2 3 4

6. Abelian ideals of Lie P.

Let G, P, and A be as in the Introduction. If char A; is zero, then
the exponential mapping is a P-equivariant morphism between a = Lie A
and A. If char A: is a good prime for G, we can make use of Springer's
map ( p : U —> At between the unipotent variety U of G and the nilpotent
variety J\f of Q which is a G-equivariant bijective morphism (see [35]), and,
upon "restriction" of y to A, we obtain a P-equivariant bijective morphism
from A onto a, e.g., see [31, Thm 4.1]. Note that a is an abelian ideal in p.
Consequently, we get a statement analogous to Theorem 1.1 for the adjoint
action of P on P-invariant linear subspaces of Lie Pu which are abelian as
subalgebras of p. Thanks to a result of Pyasetskii [27], which is also valid in
positive characteristic, we also obtain a statement for the coadjoint action
of P on a* similar to Theorem 1.1.

The characteristic restrictions for the adjoint action can be removed
completely in the exceptional cases in Table 1 by employing the computer
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algorithm outlined in [14]. This algorithm is valid provided p is not very
bad for G. The remaining cases when p = 2 for F^ and G^ can be verified
directly.

7. Abelian subalgebras of Q.

In [21] A.I. MaPcev determined all abelian subalgebras of maximal
dimension in each simple complex Lie algebra 5, up to G-conjugacy,
extending work of I. Schur [34], i.e., the special case for s\n(k).

We give an approach to MaPcev's result in arbitrary characteristic
utilizing the information in Table 1 above. Let s be a solvable subalgebra
of Q. Without loss, we may assume that s C b (Lie-Kolchin). Let X be
the Grassmann variety consisting of flags of subspaces s ' C b' in g, where
dim s ' = dims and dim b' = dim b. Then X is projective and G operates on
it via the adjoint action. Let Y be the closure of the G-orbit in X of the
flag s C b. Whence Y is complete. Observe that Y consists of flags s ' C b'
in 0, where s ' is a solvable subalgebra of Q and b' is a Borel subalgebra of Q.
By BorePs fixed point theorem [2, 10.4] there is a flag So C bo in Y which
is fixed by B. Thus b = bo and QQ is an ideal in b. In other words, there
is always an ideal of b in the closure of the G-orbit in Q of any solvable
subalgebra s of b (possibly of different isomorphism type, but of the same
dimension as s).

Considering the particular case when s is an abelian subalgebra of 5,
the maximal possible dimensions of these can be read off from Table 1
above by the aforementioned construction. Comparing the information in
this table with MaPcev's list, we observe that in all instances, with the
exception of G^, every abelian subalgebra of Q of maximal dimension is
itself conjugate to an abelian ideal of b under G (provided p is not very bad
for G). In (?2 there are three classes of abelian subalgebras of Q of maximal
dimension 3 (p 7^ 2); but there is only one such class containing the abelian
ideal Lie A of b, where A is as in Table 1.

Although, it is not directly related to the questions addressed in this
paper, we should like to mention recent work of B. Kostant [19], extending
earlier results from [18], where the family of all abelian ideals a of the
Borel subalgebra b of a simple complex Lie algebra g plays an important
role. Motivated by MaPcev^s work [21], Kostant constructs inequivalent
irreducible G-submodules in the exterior algebra /\Q of ^, one for each
abelian ideal a of b in [18], where LieG = Q. In his recent summary [19],
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Kostant gives an account of D. Peterson's remarkable theorem that the
number of abelian ideals in b equals 27', where r = rankg. He determines
the structure of each such ideal a in terms of a certain Cartan decomposition
of 0, and moreover, exhibits a close connection between the discrete series
representations and the abelian ideals a.

I am grateful to D. Panyushev for some very helpful comments, for
detecting some errors in an earlier version of this note, and for pointing
out the connection between the results in Section 3 and gradings of Q
(Remark 3.2). I should also like to thank M. Brion who pointed out the
connection with MaPcev's work in Section 7. The question whether a
statement like Theorem 1.1 might be true was raised independently by
P. Neumann and V.L. Popov. A substantial part of this manuscript was
written during a visit of the author at The University of Sydney in Spring
of 1998 supported in part by an ARC grant of G.I. Lehrer. I should like
to express my gratitude to the members of the School of Mathematics and
Statistics of the University of Sydney for their hospitality.

BIBLIOGRAPHY

[I] H. AZAD, M. BARRY, G. SEITZ, On the structure of parabolic subgroups, Corn.
in Algebra, 18 (1990), 551-562.

[2] A. BOREL, Linear Algebraic Groups, GTM 126, Springer Verlag, 1991.
[3] N. BOURBAKI, Groupes et algebres de Lie, Chapitres 4,5 et 6, Hermann, Paris,

1975.
[4] M. BRION, Quelques proprietes des espaces homogenes spheriques, Man. Math.,

99 (1986), 191-198.
[5] M. BRION, Classification des espaces homogenes spheriques, Comp. Math., 63

(1987), 189-208.
[6] M. BRION, Proceedings of the International Congress of Mathematicians, Zurich,

1994, 753-760.
[7] J. BRUNDAN, Dense Orbits and Double Cosets, Proceedings of the NATO/ASI

meeting "Algebraic groups and their representations", Kluwer, 1998.
[8] T. BRUSTLE, L. HILLE, Actions of parabolic subgroups of GL(V) on certain

unipotent subgroups and quasi-hereditary algebras, preprint 97-115, SFB 343,
Bielefeld, 1997.

[9] H. BURGSTEIN, W.H. HESSELINK, Algorithmic orbit classification for some Borel
group actions, Comp. Math., 61 (1987), 3-41.

[10] S. DONKIN, Rational representations of algebraic groups: Tensor products and
nitrations, Springer Lecture Notes in Math., 1140 (1985).

[II] E.B. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, Amer. Math.
Soc. Transl. Ser. 2, 6 (1957), 111-244.



ON NORMAL ABELIAN SUBGROUPS IN PARABOLIC GROUPS 1481

[12] L. HILLE, G. ROHRLE, On parabolic subgroups of classical groups with a finite
number of orbits on the unipotent radical, C. R. Acad. Sci. Paris, Serie I, 325
(1997), 465-470.

[13] L. HILLE, G. ROHRLE, A classification of parabolic subgroups of classical groups
with a finite number of orbits on the unipotent radical, to appear in Transformation
Groups.

[14] U. JURGENS, G. ROHRLE, Algorithmic Modality Analysis for Parabolic Groups,
to appear in Geom. Dedicata.

[15] V. KAC, Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213.
[16] V.V. KASHIN, Orbits of adjoint and coadjoint actions of Borel subgroups of

semisimple algebraic groups, Problems in Group Theory and Homological algebra,
Yaroslavl', (Russian), 1997, 141-159.

[17] F. KNOP, On the set of orbits for a Borel subgroup, Comment. Math. Helv., 70
(1995), 285-309.

[18] B. KOSTANT, Eigenvalues of the Laplacian and commutative Lie subalgebras,
Topology, 3, suppl. 2 (1965), 147-159.

[19] B. KOSTANT, The set of abelian ideals of a Borel subalgebra, Cartan decomposi-
tions, and discrete series representations, Internal. Math. Res. Notices, 5 (1998),
225-252.

[20] M. KRAMER, Spharische Untergruppen in kompakten zusammenhangenden
Liegruppen, Compositio Math., 38 (1979), 129-153.

[21] A. MAL'CEV, Commutative subalgebras of semi-simple Lie algebras, Translations
of the Amer. Math. Soc. Series 1, 9 (1951), 214-227.

[22] 0. MATHIEU, Filtrations of G-modules, Ann. Sci. Ecole Norm. Sup., 23 (1990),
625-644.

[23] I. MIKITYUK, On the integrability of invariant hamiltonian systems with
homogeneous configurations spaces, Math. USSR-Sb., 57 (1987), 527-546.

[24] I. MULLER, H. RUBENTHALER, G. SCHIFFMANN, Structure des espaces preho-
mogenes associes a certaines algebres de Lie graduees, Math. Ann., 274 (1986),
95-123.

[25] V.L. POPOV, A finiteness theorem for parabolic subgroups of fixed modality,
Indag. Math. N. S., 8 (1) (1997), 125-132.

[26] V. POPOV, G. ROHRLE, On the number of orbits of a parabolic subgroup on its
unipotent radical, Algebraic Groups and Lie Groups, Australian Mathematical
Society Lecture Series, 9, ed. G.I. Lehrer, Cambridge University Press, 1997,
297-320.

[27] V.S. PYASETSKII, Linear Lie groups acting with finitely many orbits, Funct.
Anal. AppL, 9 (1975), 351-353.

[28] R.W. RICHARDSON, Finiteness Theorems for Orbits of Algebraic Groups, Indag.
Math., 88 (1985), 337-344.

[29] R. RICHARDSON, G. ROHRLE, R. STEINBERG, Parabolic subgroups with Abe-
lian unipotent radical, Inv. Math., 110 (1992), 649-671.

[30] G. ROHRLE, Parabolic subgroups of positive modality, Geom. Dedicata, 60 (1996),
163-186.

[31] G. ROHRLE, A note on the modality of parabolic subgroups, Indag. Math. N.S.,
8 (4) (1997), 549-559.



1482 GERHARD ROHRLE

[32] G. ROHRLE, On the modality of parabolic subgroups of linear algebraic groups,
to appear in Manuscripta Math.

[33] M. ROSENLICHT, On quotient varieties and the affine embeddings of certain
homogeneous spaces, Trans. Amer. Math. Soc., 101 (1961), 211-223.

[34] I. SCHUR, Zur Theorie der vertauschbaren Matrizen, J. reine und angew. Math.,
130 (1905), 66-76.

[35] T.A. SPRINGER, The unipotent variety of a semisimple group, Proc. of the
Bombay Colloq. in Algebraic Geometry (ed. S. Abhyankar), London, Oxford
Univ. Press (1969), 373-391.

[36] T.A. SPRINGER, Some results on algebraic groups with involutions, Advanced
Studies in Pure Math., 6 (1985), 525-543.

[37] T.A. SPRINGER, R. STEINBERG, Conjugacy classes in Seminar on algebraic
groups and related finite groups, Lect. Notes Math., 131, Springer Verlag,
Heidelberg (1970).

[38] R. STEINBERG, Lectures on Chevalley Groups, Yale University, 1968.
[39] R. STEINBERG, Conjugacy Classes in Algebraic Groups, Springer Lecture Notes

in Math., 366 (1974).

[40] N. VAVILOV, Weight elements of Chevalley groups, preprint.
[41] E.B. VINBERG, The Weyl group of a graded Lie algebra, Math. USSR-Izv., 10

(1976), 463-495.

[42] E.B. VINBERG, Complexity of actions of reductive groups, Funct. Anal. AppL, 20
(1986), 1-11.

Manuscrit recu Ie 2 juin 1998,
accepte Ie 10 juillet 1998.

Gerhard ROHRLE,
Universitat Bielefeld
Fakultat fur Mathematik
33615 Bielefeld (Germany).
roehrle@mathematik.uni-bielefeld.de


