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ON GRADIENTS OF FUNCTIONS
DEFINABLE IN O-MINIMAL STRUCTURES

by Krzysztof KURDYKA

0. Introduction.

Many results in subanalytic or semialgebraic geometry of R71 hold
true in a more general setting called "the theory of o-minimal structures
on the real field" (see [DM]). This theory has presented a strong interest
since 1991 when A. Wilkie [Wl] proved that a natural extension of the
family of semialgebraic sets containing the exponential function ((M,exp)-
definable sets) is an o-minimal structure. A similar extension of subanalytic
sets ((Ran^P)"0^1118'0^ sets) was ^en treated by L. van den Dries,
A. Macintyre, D. Marker in [DMM] (geometric proofs of these facts were
found recently by J-M. Lion and J.-P. Rolin [LR1], [LR2]). Another type
of o-minimal structure ((R^)-definable sets) was obtained by C. Miller
[Mi], by adding to subanalytic sets all functions x —>- xr ^ r € K, where K
is a subfield of M. We give a list and examples of o-minimal structures in
section 1. An extension of semialgebraic and subanalytic geometry was also
undertaken by M. Shiota [Sl], [S2].

Theorem 1 (Section 2), the first main result of this paper, is an o-
minimal generalization of the famous Lojasiewicz inequality ||grad/|| >_
\f\oi with a < 1, where / is an analytic function in a neighborhood of
a € R71, f(a) = 0. We prove that if / is a differentiable function in a
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bounded domain, definable in some o-minimal structure, then there exists
a C1 function ^ in one variable such that ||grad^ o /|| >_ c > 0. It is
rather surprising that the result holds also for infinitely flat functions.
Theorem 1 implies that the set of asymptotic critical values of / is finite
(Proposition 2). We recall in the beginning of the section the already
known o-minimal version of another Lojasiewicz inequality for continuous
definable functions on a compact set.

The main result of Section 3 is Theorem 2 which states: if U is an
open, bounded subset of R71, / : U -^ R is a C1 function definable in
some o-minimal structure, then all trajectories of —grad/ (i.e. solutions
of the equation x = —grad /) have their length bounded by a constant
independent of the trajectory. The function / may be unbounded and
may not have a continuous extension on U. We prove also, that for a non
negative definable ^, the flow of —grad^ defines a deformation retraction
onto (^(O). Some applications of this result in the real analytic case can be
found in [Si], [Sj]. We finish the paper by a discussion of Thorn's Gradient
Conjecture for o-minimal structures.

In Section 1 we gather basic facts on o-minimal structures. To make
the paper self-contained and accessible for a wider audience we add a
proof of Lemma 2 (on definable functions in one variable). We give also
an elementary proof (suggested by C. Miller and J-M. Lion) of the curve
selection lemma, the crucial tool in the proof of Theorem 1.

General references of various facts, when not specified, will be as
follows: for semialgebraic geometry - [BCR], for subanalytic geometry -
[BM] or [L4], for o-minimal structures - [DM].

In this paper we take the gradient with respect to the canonical
euclidian metric in M71.

1. o-minimal structures on the real field.

DEFINITION 1. — Let M = |j A^n, where each Mn ^ a family of
n€N

subsets ofR71. We say that the collection Ad is an o-minimal structure on
(R,+,.)!£•

(1) each A^n is closed under finite set-theoretical operations;

(2) if A e Mn and B e Mm, then Ax B e Mn-{-m;
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(3) let A e Mn+m and TT : R71-^ —> R71 be projection on the first n
coordinates, then 7r(A) e M.n,

(4) Jet /^i,..,^ e Q[Xi,..,X^], then {^ C R71 : /(rr) = O^i(^) >
0,...,^(^) >0}€A^;

(5) M.\ consists of all finite unions of open intervals and points.

For a fixed o-minimal structure M. on (R, +, •) we say that A is an
M-set if A e Mn for some n e N. We say that a function f : A —> R^
where A C M71, is an M-function if its graph is an M-set.

Axiom (5) will be called the o-minimality of M.

Examples. — We give below a list of o-minimal structures on
(R, +, •) (see also [DM] for detailed definitions and comparisons between the
above examples) with examples of functions definable in those o-minimal
structures:

(1) Semialgebraic sets (by Tarski-Seidenberg); f(x^y) =

(2) Global subanalytic sets (by Gabrielov);
f^y)=-y-^xe(Q^).

smx
(3) (R,exp)-definable sets (by Wilkie);

0

f(x^y) = r^exp ( - -^-^) m^.

(4) (Rayi,exp)-definable sets (by van den Dries, Macintyre, Marker);
f{x,y) = x^^siny), x > 0,y € (0,7r).

(5) (R^)-definable sets (by Miller);
f(x,y) = x^exp (^Y 0 < x < y < 1.\y/
Recently another example of an o-minimal structure was found by van

den Dries and Speissegger [DS] which is larger than R^ but polynomially
bounded (i.e any definable function in one variable is bounded by a
polynomial at infinity). Finally we mention a result of Wilkie [W2] in which
he gives a general method for construction of o-minimal structures; this
method can be applied to Pfaffian functions.

In the rest of this paper M. will denote some fixed, but
arbitrary, o-minimal structure on (R,+,-). We will give now several
elementary properties of ./M-sets and A^-functions.

Remark 1. — Let E be an .M-set in R71^1. Axioms (1)-(4) imply
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that the sets
{x e IT : 3a^+i (a^n+i) € ^} and {x € IT : Va-n+i (a^n+i) € ^}

are A^-sets. Actually the first set is the image of E by projection, the second
is the complement of the image of the complement of E by projection.

Remark 2. — The sum, product, inverse, composition of A^-func-
tions is again an A^-function. Also the image and inverse image of an
A'1-set by an A^-function are again A^-sets. Proofs of these facts are quite
standard applications of Remark 1 and axioms (1)-(4) and actually the
same as in the semialgebraic case (see e.g. [BCR]).

LEMMA 1. — Let f : A —> R be an M-function such that f(x) ^ 0
for all x C A. Let G : A —> R7"' be an M. -mapping and define a function
y : G(A) —> R by

^(y) = inf f(x).
rreG-1^)

Then (p is an M-function.

Proof. — Write a formula for the graph of the function (p and apply
Remark 1.

COROLLARY 1. — Let A be an M-set in R71. Then the distance
function d,A ' ' V 1 —>- ̂  is an M-function, where dA{x) == inf \x — y\.y^A

COROLLARY 2. — Let A be an M-set in M71. Then A and Int A are
M-sets.

Proof. — Actually by Corollary 1 we know that C?A is an A^-function,
hence A = ^(O)"1 is an A^-set. To prove that the interior of A is an M-set
we use the fact that by axiom (1) the complement of an A^-set is an A^-set.

LEMMA 2 (Monotonicity Theorem). — Let f : (a, b) —> R be an
Ad-function. Then there exist real numbers a=ao < a\ < ... < a,k =b such
that f is continuously differentiable on each interval (a^.a^+i). Moreover
f is an M-function and the function f is strictly monotone or constant on
every interval (a^, 0^4-1).

Proof (Due essentially to van den Dries [vD]). — We may assume
that the set /((a, b)) is infinite. First we prove that D(f)^ the set of
discontinuity points of /, is finite.
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Writing the definition of continuity of a function at a point and using
Remark 1 we deduce that D{f) is an M-sei in R, hence by o-minimality, it
is enough to prove that / is continuous at some point of (a, 6). Since the set
/((a, b)) is an infinite .M-set it contains an open interval. Thus by induction
we can construct a descending sequence of intervals [on^n] C (a, b) such
that an < On+i, /W < /?n, 0n - On < 1/u and /([an,/3n]) is contained in
an interval of length smaller than 1/n. Clearly / is continuous at the point
ft [oin^n}' So we have proved that the complement of D(f) is dense in

nCN
(a, 6), hence D(f) is finite.

We can assume now that / is continuous on (a, b). To prove differen-
tiability observe first that by o-minimality we have:

OBSERVATION. — For each x e (a, b) and each c € M there exists
an e > 0 such that f(t} ^ f(x) + c(t - x) for all t e (x, x + e) or
f(t) < f(x) + c(t - x) for all t e (x,x + e).

Let us write f'_(x) = lim -{f{x +1) - f(x)) for x e (a,b] andv /\j i/

f[{x) = \im-{f{x+t) - f{x)) for x € [a, 6). Note that // and f'_ aret \^u ~c
A^-functions, by Remark 1. From the above observation it is not difficult
to obtain the following consequences:

i) for each x e (a, b) the values of f_(x) and f^(x) are well defined
(possibly equal to +00 or —oo),

ii) for each x € (a, b) there exists y arbitrary close to x , y > x such
that f^(y) < /^), f_(y) < f^(x) or f^y) > /^), f_(y) > f^(x).

Clearly the sets

{x C (a, &); f'^x) = +00}, {x C (a, &); f^{x) = -00}

are A^-sets, hence are finite unions of open intervals and points. By ii) these
sets are finite. So we can assume that f'^ and f'_ take values in M. Since
f^_ and /'_ are A^-functions we may also assume that these functions are
continuous on (a, b). It follows easily now from ii) that f^_ = f'_ on (a, 6),
but this means that / is C1 on (a, 6).

We proved also that // is an .M-function, hence the claim on mono-
tonicity follows from the fact that {/' = 0} is an .M-set and so is a finite
union of points and open intervals.

Writing the definition of partial derivatives and using Remark 1 we
obtain:
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LEMMA 3. — Let f : U —> ̂  be a differentiable M-function,
where U is open in R71. Then 9f/9xj, j = 1,..., n are M-functions, and
hence grad/ is an M-mapping.

PROPOSITION 1 (Curve Selection Lemma). — Let A be an M-set
in W and suppose that a € A\{a} . Then there exists an M-function
7 : [0,6) —> W1 which is C1 on [0,e) and such that

a =7(0) and 7((0,£)) C A \ {a}.

Proof. — The key point is to construct a "definable" selection oper-
ator e, which assigns to each nonempty set A € Mn an element e(A) G A.
Let n = 1. Then e(A) is the smallest element of A if A has one. Otherwise,
let a := infA and let b e R U {+00} be maximal such that (a,b) C A. If
a, b e R, then e(A) := (a 4- b)/2. If a e R and 6 = +00, then e(A) := a + 1.
If a = -oo and b e R, then e(A) := 6 - 1. If a = -oo and b = +00 (i.e.,
A = R), then e(A) := 0. Assume e(A) has been defined for all nonempty
A € A^n. Let B e A^n+i be nonempty, and let A be its image in IR71 under
the projection map (.TI, . . . , a;n, Xn-^-i) ̂  ( a ^ i , . . . , a;n). Put a := e(A). Then
e(B) := (a,e(Ba)) where Ba := {r € R : (a,r) € B}.

This selection operator e has several applications, and Curve Selection
is only one of them: let A e Mn and a € A \ {a}. By o-minimality the set
{|a - x\: x e A} e M\ contains an interval (0, c), e > 0. For 0 < t < e, let
7(^) :== e({:c € A : |a - x\ = t}). It is routine to check that 7 : (0, e) —^ A
belongs to .M. By the monotonicity theorem 7 is (71 after suitable shrinking
of e. After composition on the right with a sufficiently flat (at 0) function
in M (e.g. the inverse of the bigest component of 7) we can further arrange
that 7 extends to a C^-function on [0,e).

2. Lojasiewicz inequalities for o-minimal structures.

We begin this section recalling an already well-known generalization
of the Lojasiewicz inequality for continuous A^-functions on a compact set.
This result was observed by T. Lot [Lo] for (R,exp)-definable sets (actually
his version is more precise than the theorem stated below); M. Shiota [Sl],
[S2] and L. van den Dries and C. Miller [DM] also noticed this fact.

THEOREM 0. — Let K be a compact subset ofW and let f,g :
K —> R be two continuous M-functions. Jf/'^O) C ^(O), then there
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exists a strictly increasing positive M. -function a : R+ —> R of class C1,
such that for any x € K we have

\f(x)\^a(g(x)).

The idea of the proof goes back to the original argument ofLojasiewicz
(see [L2] , [KLZ]). Let E C R2 be the image of K by the mapping
K 3 u —> (g(u)^f(u)) = (x^y). Clearly S is an .M-set; moreover it is com-
pact and S H {y = 0} = {(0,0)}. It is not difficult to find (by Lemma 2) a
strictly increasing positive .M-function a : R+ —>• R of class C1, such that
S C {y > ff{x\ x > 0}. It is proved in [DM] that for each k € N one can
find a of class Ck.

We state now the main result of this section. Recall that M. is any
fixed o-minimal structure on (R, +, •).

THEOREM 1. — Let f : U —> R be a differentiable M-function,
where U is an open and bounded subset ofW^. Suppose that f(x) > 0 for
all x C U. Then there exists c > 0, p > 0 and a strictly increasing positive
M-function ^ : R+ —^ R of class C1, such that

||grad(^o/)(^)|| >c,

for each x G U, f{x) C (0,p).

The proof is given in the end of the section. We shall see now that in
the subanalytic case our Theorem 1 is equivalent to the classical Lojasiewicz
inequality for gradients of analytic functions (see [LI], [L2], [BM]). We state
this result in the form generalized in [KP]:

THEOREM (LI). — Let f : Q —> R be a subanalytic function which
is differentiable in fl.\ f~l(p), where Q is an open bounded subset ofW1.
Then there exist C > 0, p > 0 and 0 < a < 1 such that:

||grad/0r)|| > C\f(x)\^

for each x € ^ such that \f{x) | € (0, p). If in addition lim f(x) = 0 for some
x—>a

a € ^ f which holds in the classical case, where f is analytic and a € fl.,
f(a) = 0), then the above inequality holds for each x e ^ \ /"^(O) dose
to a.

To see that in the subanalytic case (LI) =^ Theorem 1 it is enough
to put ^(t) = tl~a. To prove the converse in the subanalytic case,
recall first that every subanalytic function in one variable is actually
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semianalytic (see [L2], [KLZ]). Hence ^ has the Puiseux expansion of the
00

form ̂ ) = ^ a^. Thus, for t small enough we have \^(t)\ < Dt^~1

v=0
for some D > 0. The last inequality and Theorem 1 yield

iî /Miî ^^ îî î i-t.
Remark. — The above argument and Theorem 1 imply that (LI)

holds in any polynomially bounded o-minimal structure on (R, +, •).

We discuss now a consequence of Theorem 1. Let / : U —> M be a
differentiable function, where U is an open subset of R72. We shall say that
A € M U {-oo, +oo} is an asymptotic critical value of / if there exists a
sequence Xn C U such that

f(xn) -^ A and grad/(a;n) -^ 0.

Clearly any "true" critical value of / (i.e A = f(x) and grad/(a;) = 0, for
some x € U) is also an asymptotic critical value. Notice that this notion
depends heavily on the domain U, in particular on whether U is bounded
or not.

Suppose now that U is bounded and that our / is an A^-function,
where M. is an o-minimal structure on (R,+,«) . Let A be an asymptotic
critical value of /. It follows immediately from Theorem 1 that / has no
asymptotic critical values in (A - p, A) U (A, A 4- p ) for some p > 0. But on
the other hand the set of all asymptotic critical values of / is an .M-subset
of R, so it must be finite. Thus we have proved:

PROPOSITION 2. — IfU is bounded and f is an M-function, then
the set of all asymptotic critical values of f is finite.

It is easily seen that -oo and +oo cannot be an asymptotic critical
value of an A^-function defined in a bounded set. As the following example
shows the assumption of boundness on U is necessary.

__ nf

Example. — The function f(x,y) = - on U = {y > 0} C R2, being

semialgebraic, belongs to any o-minimal structure on (R, +, •). But clearly
any A G R is an asymptotic critical value of /.

Proof of Theorem 1. — It follows from Lemma 3 that U 3 x ^
||grad/(a;)|| is an .M-function. We may suppose that /"^t) ^ 0 for any
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small enough t > 0, since otherwise, by o-minimality, the theorem is trivial.
Hence the function

^) =inf{||grad/(^)||: x e f-^t)}
is well-defined in some interval (0,6:). By Lemma 1, y? is an .M-function.

CLAIM. — There exists e' > 0 such that (p(t) > 0 for any t e (0, e ' ) .

Assume that this is not the case and put
S = { x e U : ||grad/(^)||<(/(^))2}.

Clearly S is an M-set. Let /|s denote the graph of / restricted to S. If
the claim doesn't hold, then there exists a sequence of positive numbers
in —> 0 such that (p(tn) = 0 for all n € N. Let Xn € S be a sequence such
that f(xn) = tn^ in other words (xn.tn) € /|s. Let b be an accumulation
point of {xn}, then (6,0) belongs to the closure of the set (/|s \ {(^0)}).
By the curve selection lemma (Proposition 1) we have an A^-function (arc)
7 : (-^, S) -^ R71 x R of class G1, such that 7(0) = (6,0), and 7(0, 6) C /IE.
Write 7(s) = (7(5), fo^(s)), where 7(s) € S C ST. Let /^(s) = /o7(5) for
s e (0,<5), then clearly lim h(s) = 0 = lim h\s), since 7(s) € S. Of course
/i and h' are A^-functions, so by Lemma 2 we may suppose that h and ^'
are monotone; actually they must be strictly increasing. Thus we have

0 < h\s) < A(h(s))2, for s e (0, ^),
where A is a bound for ||7'(s)||. But by the Mean Value Theorem we
have h(s) <: sh'^s), because /i' is increasing. Finally, we get 0 < h^s) <
As2(h/(s)) for any s € (0,^), which is impossible since lim /i'(s) = 0.

;s—»-0

So we have proved that (p(t) > 0 for all t € (0, ̂ ), provided that e > 0
is small enough. We define now:

A^el/V-1^): f(x)<e^ ||grad/0r)||<2^(/(a0)}.

Observe that A is also an M-set and moreover AD/"1^) -^ 0 for every t e
(O,^). Hence as before there exists d € U such that (d,0) € /IA \ {(^,0)}.
Applying again the curve selection lemma to /IA at the point (d,0) we
obtain an .M-function (arc) T} : {-6,6) —^ W^ of class (71, such that
77(0) = (d,0), and 77(0, 6) C /IA. Write as before rj(s) = (rj(s), f o rj(s)),
where rj(s) € A C M71. Let g(s) = f o n{s) for s € (0,^), then clearly
lim g(s) = 0 and ^(s) > 0 for each s € (0, 6). It follows from Lemma 2 that
for 6 ' > 0 small enough the function g : (0 ,6 ' ) —> ]R is a diffeomorphism
onto (0,p), for some p > 0. We put

^(t)=g-\t) for ^G(0,p).
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We shall check now the inequality claimed in Theorem 1. Let B be some
bound for \\rf(s)\\ in (0,^). Take any x € U such that t = f(x) € (0,p),
and write s = ̂ f(t) = p"1^). Then we have

||grad^o/(^)|| = ̂ (/(^llgrad/Cr)!!

^ v^)|||grad/(^))|| ̂  ̂ (/o^) = ̂  =c,

since ||grad/(7;(5))|| ||r/(5)|| > (grad/^^))^'^)) = (f o rjy(s) and
5 > h'OOII. Theorem 1 follows.

3. Trajectories of gradients of .M-functions.

Let / : U —> R be a C1 function, where U is an open subset of W1.
We shall consider a vector field,

U 3 x ̂  -grad f(x) € IT.

Let a, f3 € 1R U {-oo, +00}. We shall say that 7 : (a, /3) -^ £/ is a trajectory
of the vector field -grad / if it is a maximal differentiable curve verifying
7'(^) = -grad/(7(s)). Actually we shall consider 7 as an equivalence class
of all curves obtained from 7 by a strictly increasing C1 reparametrization.
Observe that if ^ is an increasing C1 diffeomorphism between two intervals
in R, then the trajectories of -grad^ o / and those of -grad/ are the
same.

Let a, b C 7. We denote by |7(a, b)\ the length of 7 between a and b.

Lojasiewicz derived (see [LI], [L3]) from (LI) that all trajectories of
-grad / are of finite length, when / is analytic in a neighborhood of a
compact £7. We have:

THEOREM 2. — Let f : U —>R be a function of class C1, where
U is an open and bounded subset ofR71. Suppose that f is an M-function,
for some o-minimal structure M..

a) TAejn there exists A > 0 such that all trajectories of—grad / have
length bounded by A.

b) More precisely, there exists a : R+ —> R_(_ a continuous strictly
increasing M-function, with lim^o ̂ (t) = 0, such that if 7 is a trajectory
of —grad / and a, b € 7, then

|7(a^)|<a(|/(6)-/(a)|).
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Proof of theorem 2. — Taking, if necessary the composition '0 o /,
where ^(t) = we may suppose that / is bounded; more exactly

that the image of / lies in (-1,1). We consider again the A^-function
(p : (-1,1) ^M defined by

^(t) =inf{||grad/0r)||: x € f-\t)}^

when /-1^) ^ 0, and ^p(t) = 1 when /^(t) = 0. Let S be the set of
all asymptotic critical values of /. Observe that A € S if y?(A) = 0, or
lim ^(t} = 0, or lim ^p(t) = 0.
t/\ t\^A

Let J c ( — l , l ) b e a n open interval. Assume that (p is bounded from
below in I by some c > 0. Let 7 be a trajectory of -grad / and a, b C 7.
Suppose that the part of 7 lying between a and b is contained in /-1(J).
We parametrise 7 by arc-length (i.e ^'(s)!! = 1), so by the Mean Value
Theorem we have that |/ o ̂ (/3) - f o 7(0)! > c |/3 - a|, in other words

Ka.^l^1!/^)-/^)!.
c

This observation explains the idea of the proof. By a partition — 1 = to <
t\ < . . . < tk = 1 we shall decompose (—1,1) in such a way that y? is
strictly monotone on (^,^-(-1). Moreover we shall distinguish between two
disjoint types of intervals, namely

(1) there exists ci > 0 such that ip(t) ^ Ci on (^, ̂ +1) (we write i € I\
in this case), or

(2) one of ^, ^+1 is an asymptotic critical value of /, hence by
Theorem 1, there exist ci > 0 and ^, : (^, ̂ +1) —> R a strictly increasing,
bounded C1 function such that,

||grad(^o/)(^)|| ̂

for all x € /-l(^,^-n) (we write i € ^2 m this case).

Take now any trajectory 7 of —grad /, and let 7^ = 7 n Y"1^, ̂ +1).
We denote by |7| (resp. |7^|) the length of 7 (resp. 7^). Clearly |7^| <

—\ti — ^+i| if i € Ji. Extending by continuity, we may suppose that
^i

each ^i is defined also at ^ and ^+1. Hence for i e ^2 we have |7^| <
—|^^(^) — ^(^+i)|, since the trajectories of —grad (^ o /) and —grad/
Ci
are the same in /-l(^,^+l). Finally, we can write

k-l

|7| = ̂  |7d < ̂  -1^ - ̂ il + E -l^(^) - ̂ (^+i)l = A,
z=o zeJi ' zei2 cl
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which proves part a) of Theorem 2.

We are now going to construct the function o- of part b). For i e h
we put

^M-^sup^^)-^)! : p,9e(^+i),r=p-g},
T

and ai(r) = — for i e Ji. Extend each ai to a continuous strictly increasing

.^-function on R. It is easily seen that a = sup a, satisfies b) of Theorem 2.

We finish this section by a short discussion of some consequences of
Theorem 2, which extend and generalize those known in the real analytic
(compact) setting.

Observe that if 7 : (a, (3) -^ U is a trajectory then XQ = lim -y(s)

exists, and in general XQ belongs to U. Notice that if XQ € U, then XQ is a
critical point of /. Let us take E a closed A^-subset in an open set [/; by
4.22 of [DM], E is the zero set of an .M-function / : U -^ R of class C2.
Let 9 = f 2 ' We want to show that the flow of -grad^ defines a strong
deformation retraction of a neighborhood of E onto E. This is actually a
new result even in the subanalytic case since the retraction is global and
E is not necessarily compact. By Proposition 2, taking a neighborhood of
E, we may suppose that 0 is the only asymptotic critical value of g in U.
Clearly the set

V={xeU : dist(rr, OU) < a(g(x))}

is an .M-set, it is an open neighborhood of E. For each x € V we denote by
^x •• (o^Ar) —^ U the trajectory passing through x. It is clearly unique if
g{x) ̂  0 and constant (hence unique) if g(x) = 0. Put R(x) = lim 7;r(5),

S—^ Px

and observe that R(x) € E. We have:

PROPOSITION 3. — There exists an open neighborhood Vi ofE such
that R: Vi —> E is a strong deformation retraction.

Proof. — First we shall prove that R is continuous. Take XQ e V and
^o a neighborhood of R(xo). Let x^ ^ E be close to R{xo) so that there is
(by Theorem 2 b)) a neighborhood f^i of x^ with the following property:
any trajectory passing through Oi has its limit in Ho. By continuity of
the flow of -grad^ there exists a neighborhood G of XQ such that any
trajectory passing by G must cross f^i. So we have R(G) C ^o, which
proves the continuity of R.
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Let 7 be the trajectory passing through x. Let 73; be the part of 7
between x and the limit R(x). Assume that 73; : [0, f3x} —» U is parametrized
by arc-length; moreover that 7a;(0) = x, and 7a;(Ac) = R{x). Clearly (3x is
the length of 73;. Notice that the argument in the proof of continuity of R
yields that the function V 3 x —> (3x is continuous. Let V\ be the set of all
x € V such that 73; lies in V. We define a homotopy F : [0,1] x V\ —> V\
as follows: Ft(x) = 7a;(^Ac)-

In general the retraction R is not an A^-mapping. Take g ( x ^ y ) =
(a*2—^/3)2; it was observed by Hu [Hu] that the retraction R is not hoelderian
(at (0,0)) in this case, hence it cannot be subanalytic. Observe also that,
in general, the set V\ is not an .M-set. It would be interesting to prove
that actually R belongs to some larger o-minimal structure. Even a weaker
problem is open (also in the subanalytic case):

CONJECTURE (F). — Let 7 be a trajectory of—grad/, where / is
an M-function of class C1, and let H be any M. -subset. Then 7 H H has a
finite number of connected components.

This is connected with the Gradient Conjecture of R. Thorn, proved
recently in [KM]. R. Thorn asked whether for an analytic function / every
trajectory 7 of —grad/ has a tangent at the limit point (i.e. whether

lim — — — — ' ' exists). We can of course ask the same question for as^\-r(s)-R(x)\ )

trajectory of the gradient of any .M-function of class C1.
Y(s)

It is easily seen that (F) implies that lim -——— exists, thus that
^Ar |7'(5)|

the tangent to 7 at the limit point exists.
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