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ON GRADIENTS OF FUNCTIONS
DEFINABLE IN O-MINIMAL STRUCTURES

by Krzysztof KURDYKA

0. Introduction.

Many results in subanalytic or semialgebraic geometry of R™ hold
true in a more general setting called “the theory of o-minimal structures
on the real field” (see [DM]). This theory has presented a strong interest
since 1991 when A. Wilkie [W1] proved that a natural extension of the
family of semialgebraic sets containing the exponential function ((R, exp)-
definable sets) is an o-minimal structure. A similar extension of subanalytic
sets ((R,,,exp)-definable sets) was then treated by L. van den Dries,
A. Macintyre, D. Marker in [DMM] (geometric proofs of these facts were
found recently by J-M. Lion and J.-P. Rolin [LR1], [LR2]). Another type
of o-minimal structure ((RX )-definable sets) was obtained by C. Miller
[Mi], by adding to subanalytic sets all functions z — z”, r € K, where K
is a subfield of R. We give a list and examples of o-minimal structures in
section 1. An extension of semialgebraic and subanalytic geometry was also
undertaken by M. Shiota [S1], [S2].

Theorem 1 (Section 2), the first main result of this paper, is an o-
minimal generalization of the famous Lojasiewicz inequality ||grad f|| >
|f|® with < 1, where f is an analytic function in a neighborhood of
a € R*, f(a) = 0. We prove that if f is a differentiable function in a
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bounded domain, definable in some o-minimal structure, then there exists
a C! function ¥ in one variable such that ||grad ¥ o f|| > ¢ > 0. It is
rather surprising that the result holds also for infinitely flat functions.
Theorem 1 implies that the set of asymptotic critical values of f is finite
(Proposition 2). We recall in the beginning of the section the already
known o-minimal version of another Lojasiewicz inequality for continuous
definable functions on a compact set.

The main result of Section 3 is Theorem 2 which states: if U is an
open, bounded subset of R®, f : U — R is a C! function definable in
some o-minimal structure, then all trajectories of —grad f (i.e. solutions
of the equation £ = —grad f) have their length bounded by a constant
independent of the trajectory. The function f may be unbounded and
may not have a continuous extension on U. We prove also, that for a non
negative definable g, the flow of —grad g defines a deformation retraction
onto g~1(0). Some applications of this result in the real analytic case can be
found in [Si], [Sj]. We finish the paper by a discussion of Thom’s Gradient
Conjecture for o-minimal structures.

In Section 1 we gather basic facts on o-minimal structures. To make
the paper self-contained and accessible for a wider audience we add a
proof of Lemma 2 (on definable functions in one variable). We give also
an elementary proof (suggested by C. Miller and J-M. Lion) of the curve
selection lemma, the crucial tool in the proof of Theorem 1.

General references of various facts, when not specified, will be as
follows: for semialgebraic geometry — [BCR], for subanalytic geometry —
[BM] or [E4], for o-minimal structures — [DM].

In this paper we take the gradient with respect to the canonical
euclidian metric in R™.

1. o-minimal structures on the real field.

DEFINITION 1. — Let M = |J M, where each M,, is a family of
neN
subsets of R™. We say that the collection M is an o-minimal structure on

(R, +,-) if:
(1) each My, is closed under finite set-theoretical operations;

(2) if Ae M,, and B € M,,, then A X B € My im;
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(3) let A € Mpim and m : R™*™ — R™ be projection on the first n
coordinates, then m(A) € My;

(4) let f,91,...,9x € Q[Xq,...,X5,], then {z € R" : f(z) = 0,g:1(x) >
0,...,9x(z) > 0} € My;

(5) M1 consists of all finite unions of open intervals and points.

For a fixed o-minimal structure M on (R, +,-) we say that A is an
M-set if A € M,, for some n € N. We say that a function f : A — R™,
where A C R", is an M-function if its graph is an M-set.

Axiom (5) will be called the o-minimality of M.

Examples. — We give below a list of o-minimal structures on
(R, +, -) (see also [DM] for detailed definitions and comparisons between the
above examples) with examples of functions definable in those o-minimal
structures:

(1) Semialgebraic sets (by Tarski-Seidenberg); f(z,y) = v/z* + y*.
(2) Global subanalytic sets (by Gabrielov);

f(fl?,y) = ﬁax € (077T)‘

(3) (R, exp)-definable sets (by Wilkie);
f(z,y) = 2% exp ( - ;4_:?;—3;5) Inz.

(4) (Rgn,exp)-definable sets (by van den Dries, Macintyre, Marker);
f(z,y) = z¥2In(siny), z > 0,y € (0, 7).

(5) (R® )-definable sets (by Miller);
f(z,y) = 22 exp (%), 0O<z<y<l

Recently another example of an o-minimal structure was found by van
den Dries and Speissegger [DS] which is larger than R® but polynomially
bounded (i.e any definable function in one variable is bounded by a
polynomial at infinity). Finally we mention a result of Wilkie [W2] in which
he gives a general method for construction of o-minimal structures; this
method can be applied to Pfaffian functions.

In the rest of this paper M will denote some fixed, but
arbitrary, o-minimal structure on (R, +,-). We will give now several
elementary properties of M-sets and M-functions.

Remark 1. — Let E be an M-sét in R"*!. Axioms (1)-(4) imply



772 KRZYSZTOF KURDYKA

that the sets
{r e R":3zpy1 (z,2n41) € E} and {z € R : Vi1 (T,Zn41) € E}

are M-sets. Actually the first set is the image of E by projection, the second
is the complement of the image of the complement of E by projection.

Remark 2. — The sum, product, inverse, composition of M-func-
tions is again an M-function. Also the image and inverse image of an
M-set by an M-function are again M-sets. Proofs of these facts are quite
standard applications of Remark 1 and axioms (1)—(4) and actually the
same as in the semialgebraic case (see e.g. [BCR]).

LEMMA 1. — Let f: A — R be an M-function such that f(z) > 0
for allx € A. Let G : A — R™ be an M-mapping and define a function
¢:G(A) — R by

wly) = f(z).

inf
z€G~1(y)
Then ¢ is an M-function.

Proof. — Write a formula for the graph of the function ¢ and apply
Remark 1.

COROLLARY 1. — Let A be an M-set in R™. Then the distance
function d4 : R® — R is an M-function, where d4(z) = inlf‘1 |z — yl.
ye

COROLLARY 2. — Let A be an M-set in R™. Then A and Int A are
M-sets.

Proof. — Actually by Corollary 1 we know that d 4 is an M-function,
hence A = d4(0)~! is an M-set. To prove that the interior of 4 is an M-set
we use the fact that by axiom (1) the complement of an M-set is an M-set.

LEMMA 2 (Monotonicity Theorem). — Let f : (a,b) — R be an
M-function. Then there exist real numbers a=ag < a1 < ... < ar=b such
that f is continuously differentiable on each interval (a;,a;+1). Moreover
f' is an M-function and the function f is strictly monotone or constant on
every interval (a;, a;+1)-

Proof (Due essentially to van den Dries [vD]). — We may assume
that the set f((a,b)) is infinite. First we prove that D(f), the set of
discontinuity points of f, is finite.
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Writing the definition of continuity of a function at a point and using
Remark 1 we deduce that D(f) is an M-set in R, hence by o-minimality, it
is enough to prove that f is continuous at some point of (a, b). Since the set
f((a, b)) is an infinite M-set it contains an open interval. Thus by induction
we can construct a descending sequence of intervals [, 8,] C (a,b) such
that o, < @1, Brt+1 < Bny Bn — an < 1/n and f([an, Bn]) is contained in
an interval of length smaller than 1/n. Clearly f is continuous at the point

M [@n, Bn]. So we have proved that the complement of D(f) is dense in
neN

(a,b), hence D(f) is finite.

We can assume now that f is continuous on (a, ). To prove differen-
tiability observe first that by o-minimality we have:

OBSERVATION. — For each z € (a,b) and each ¢ € R there exists
an € > 0 such that f(t) > f(z) +c(t —z) for all t € (z,z + €) or

Ff@#) < f(z) +c(t—z) for allt € (z,z +€).

Let us write f’(z) = %(f(aH—t)—f(m)) for ¢ € (a,b] and

lim

t,/0
1

filz) = }{r(l) ;(f(x-kt) — f(z)) for z € [a,b). Note that f}, and f’ are

M-functions, by Remark 1. From the above observation it is not difficult

to obtain the following consequences:

i) for each = € (a,b) the values of f’ (x) and f/, (z) are well defined
(possibly equal to +oc0 or —o0),

ii) for each z € (a,b) there exists y arbitrary close to z , y > z such
that f} (y) < fi(z), fL(y) < fi(x) or fiy) > fi(2), fL(y) 2 fi(z).
Clearly the sets
{z € (a,b); fi (z) = 400}, {z € (a,b); fi(z) = —o0}
are M-sets, hence are finite unions of open intervals and points. By ii) these
sets are finite. So we can assume that f| and f’ take values in R. Since
f4 and f’ are M-functions we may also assume that these functions are

continuous on (a,b). It follows easily now from ii) that f}, = f’ on (a,b),
but this means that f is C! on (a,b).

We proved also that f’ is an M-function, hence the claim on mono-
tonicity follows from the fact that {f’ = 0} is an M-set and so is a finite
union of points and open intervals.

Writing the definition of partial derivatives and using Remark 1 we
obtain:
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LEMMA 3. — Let f : U — R* be a differentiable M-function,
where U is open in R™. Then 0f/0x;, j = 1,...,n are M-functions, and
hence grad f is an M-mapping.

PROPOSITION 1 (Curve Selection Lemma). — Let A be an M-set
in R™ and suppose that a € A\ {a}. Then there exists an M-function
7 : [0,6) — R™ which is C* on [0,¢) and such that

a=7(0) and 7((0,¢)) C A\ {a}.

Proof. — The key point is to construct a “definable” selection oper-
ator e, which assigns to each nonempty set A € M,, an element e(A4) € A.
Let n = 1. Then e(A) is the smallest element of A if A has one. Otherwise,
let a := inf A and let b € R U {+o00} be maximal such that (a,b) C A. If
a,b € R, then e(A) := (a+b)/2. If a € R and b = 400, then e(A) := a + 1.
Ifa=—coand b € R, then ¢(4) :=b—1. If a = —c0 and b = +c0 (i.e.,
A = R), then e(A) := 0. Assume e(A) has been defined for all nonempty
A € M,. Let B € M1 be nonempty, and let A be its image in R under
the projection map (x1,...,Zn, Tnt1) — (Z1,...,2Tn). Put a := e(A). Then
e(B) := (a,e(B,)) where B, :={r € R: (a,r) € B}.

This selection operator e has several applications, and Curve Selection
is only one of them: let A € M,, and a € A\ {a}. By o-minimality the set
{la —z|: z € A} € M; contains an interval (0,¢), € > 0. For 0 <t <, let
~v(t) ;== e({z € A: |a — x| = t}). It is routine to check that v : (0,¢) — A
belongs to M. By the monotonicity theorem y is C! after suitable shrinking
of €. After composition on the right with a sufficiently flat (at 0) function
in M (e.g. the inverse of the bigest component of ) we can further arrange
that ~ extends to a C'-function on [0, €).

2. Lojasiewicz inequalities for o-minimal structures.

We begin this section recalling an already well-known generalization
of the Lojasiewicz inequality for continuous M-functions on a compact set.
This result was observed by T. Loi [Lo] for (R, exp)-definable sets (actually
his version is more precise than the theorem stated below); M. Shiota [S1],
[S2] and L. van den Dries and C. Miller [DM] also noticed this fact.

THEOREM 0. — Let K be a compact subset of R™ and let f,g :
K — R be two continuous M-functions. If f=1(0) C g~'(0), then there
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exists a strictly increasing positive M-function o : R, — R of class C!,
such that for any x € K we have

|f(z)] = o(g(z))-

The idea of the proof goes back to the original argument of Lojasiewicz
(see [L2] , [KLZ]). Let ¥ C R? be the image of K by the mapping
K > u— (g(u), f(u)) = (z,y). Clearly ¥ is an M-set; moreover it is com-
pact and ¥ N {y =0} = {(0,0)}. It is not difficult to find (by Lemma 2) a
strictly increasing positive M-function o : Ry — R of class C!, such that
X C {y > o(x), x > 0}. It is proved in [DM] that for each k € N one can
find o of class C*.

We state now the main result of this section. Recall that M is any
fixed o-minimal structure on (R, +, ).

THEOREM 1. — Let f : U — R be a differentiable M-function,
where U is an open and bounded subset of R"™. Suppose that f(z) > 0 for
all x € U. Then there exists ¢ > 0, p > 0 and a strictly increasing positive
M-function ¥ : R, — R of class C', such that

lgrad (¥ o f)(z)|| >c¢,
for each z € U, f(z) € (0, p).

The proof is given in the end of the section. We shall see now that in
the subanalytic case our Theorem 1 is equivalent to the classical Lojasiewicz
inequality for gradients of analytic functions (see [L1], [L2], [BM]). We state
this result in the form generalized in [KP]:

THEOREM (LI). — Let f : @ — R be a subanalytic function which
is differentiable in 2\ f~1(0), where  is an open bounded subset of R™.
Then there exist C > 0,p > 0 and 0 < a < 1 such that:

lgrad f(z)|| > C|f(=)%,
for each x € Q such that |f(z)| € (0, p). If in addition lim f(z) = 0 for some
a € Q (which holds in the classical case, where f is analytic and a € Q,

f(a) = 0), then the above inequality holds for each x € Q\ f~1(0) close
to a.

To see that in the subanalytic case (LI) = Theorem 1 it is enough
to put ¥(t) = t!7 To prove the converse in the subanalytic case,
recall first that every subanalytic function in one variable is actually



776 KRZYSZTOF KURDYKA

semianalytic (see [L2], [KLZ]). Hence ¥ has the Puiseux expansion of the

form ¥(t) = Y. a,t¥. Thus, for ¢ small enough we have |¥/(¢)| < Dt*~!
v=0

for some D > 0. The last inequality and Theorem 1 yield

lgrad (¥ o f)(=)|
|9 f ()|

lgrad f(z)|| = > %u(m)p-%:.

Remark. — The above argument and Theorem 1 imply that (LI)
holds in any polynomially bounded o-minimal structure on (R, +, ).

We discuss now a consequence of Theorem 1. Let f : U — R be a
differentiable function, where U is an open subset of R"™. We shall say that
A € RU {—o00,+00} is an asymptotic critical value of f if there exists a
sequence z, € U such that

f(zp) = A and grad f(z,) — 0.

Clearly any “true” critical value of f (i.e A = f(z) and grad f(z) = 0, for
some x € U) is also an asymptotic critical value. Notice that this notion
depends heavily on the domain U, in particular on whether U is bounded
or not.

Suppose now that U is bounded and that our f is an M-function,
where M is an o-minimal structure on (R,+,-). Let A be an asymptotic
critical value of f. It follows immediately from Theorem 1 that f has no
asymptotic critical values in (A — p, A) U (A, A + p) for some p > 0. But on
the other hand the set of all asymptotic critical values of f is an M-subset
of R, so it must be finite. Thus we have proved:

PROPOSITION 2. — If U is bounded and f is an M-function, then
the set of all asymptotic critical values of f is finite.

It is easily seen that —oo and +oo cannot be an asymptotic critical
value of an M-function defined in a bounded set. As the following example
shows the assumption of boundness on U is necessary.

Example. — The function f(z,y) = —;; on U = {y > 0} C R?, being

semialgebraic, belongs to any o-minimal structure on (R, +, ). But clearly
any A € R is an asymptotic critical value of f.

Proof of Theorem 1. — It follows from Lemma 3 that U > z —
lgrad f(z)| is an M-function. We may suppose that f~1(t) # @ for any
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small enough ¢t > 0, since otherwise, by o-minimality, the theorem is trivial.
Hence the function

o(t) =inf{||lgrad f(z)| : =€ f'(t)}
is well-defined in some interval (0,¢). By Lemma 1, ¢ is an M-function.

CLAIM. — There exists ¢’ > 0 such that ¢(t) > 0 for any t € (0,¢’).

Assume that this is not the case and put

S ={zeU: |grad f(z)| < (f(2))*}.

Clearly ¥ is an M-set. Let f|s denote the graph of f restricted to X. If
the claim doesn’t hold, then there exists a sequence of positive numbers
tn, — 0 such that ¢(t,) = 0 for all n € N. Let z,, € ¥ be a sequence such
that f(z,) = tn, in other words (zn,t,) € f|x. Let b be an accumulation
point of {z,}, then (b,0) belongs to the closure of the set (f|z \ {(b,0)}).
By the curve selection lemma (Proposition 1) we have an M-function (arc)
¥ : (—=6,6) = R™ xR of class C?, such that 4(0) = (b,0), and ¥(0,6) C fls.
Write ¥(s) = (y(s), f o¥(s)), where v(s) € & C R™. Let h(s) = f o~(s) for
s € (0,6), then clearly sh_g(l) h(s) =0= ;1_13(1) K/ (s), since v(s) € E. Of course
h and A’ are M-functions, so by Lemma 2 we may suppose that h and h’
are monotone; actually they must be strictly increasing. Thus we have

0 < h'(s) < A(h(s))?, for s € (0,6),
where A is a bound for ||v/(s)||. But by the Mean Value Theorem we
have h(s) < sh/(s), because h’ is increasing. Finally, we get 0 < h'(s) <
As®(R (s))? for any s € (0,6), which is impossible since lil’% k' (s) = 0.

So we have proved that (t) > 0 for all t € (0,¢€), provided that € > 0
is small enough. We define now:

A={zeU\f0): f(z)<e, llgradf(2)] < 2¢(f(x))}-
Observe that A is also an M-set and moreover AN f~1(t) # @ for every t €
(0,¢€). Hence as before there exists d € U such that (d,0) € f|a \ {(d,0)}.
Applying again the curve selection lemma to f|a at the point (d,0) we
obtain an M-function (arc) 7 : (—6,6) — R™ of class C?, such that
7(0) = (d,0), and 7(0,8) C f|a. Write as before 7j(s) = (n(s), f o n(s)),
where n(s) € A C R™ Let g(s) = fon(s) for s € (0,6), then clearly
;EI%) g(s) =0 and g(s) > 0 for each s € (0, ). It follows from Lemma 2 that
for 6 > 0 small enough the function g : (0,6’) — R is a diffeomorphism
onto (0, p), for some p > 0. We put

U(t) =g (t) for te(0,p).
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We shall check now the inequality claimed in Theorem 1. Let B be some
bound for ||7(s)|| in (0,6"). Take any = € U such that t = f(z) € (0, p),
and write s = ¥(¢) = g~!(¢). Then we have

lerad ¥ o f(x)] = ¥'(f(x))llgrad £(@)]
> w(1) L lerad Sl = 2 (Fon)(s) = 5 =c.

since [|grad f(n(s))| [n'(s)l > (grad f(n(s)),n’(s)) = (f on)'(s) and
B > ||In'(8)]|- Theorem 1 follows.

3. Trajectories of gradients of M-functions.

Let f: U — R be a C! function, where U is an open subset of R”.
We shall consider a vector field,

U >z~ —grad f(z) € R™.

Let o, 8 € RU{—00,+00}. We shall say that v : (a,8) — U is a trajectory
of the vector field —grad f if it is a maximal differentiable curve verifying
v'(t) = —grad f(vy(s)). Actually we shall consider v as an equivalence class
of all curves obtained from « by a strictly increasing C! reparametrization.
Observe that if 1 is an increasing C* diffeomorphism between two intervals
in R, then the trajectories of —grad i o f and those of —grad f are the
same.

Let a,b € v. We denote by |y(a, b)| the length of v between a and b.

Lojasiewicz derived (see [L1], [L3]) from (LI) that all trajectories of
—grad f are of finite length, when f is analytic in a neighborhood of a
compact U. We have:

THEOREM 2. — Let f : U — R be a function of class C', where
U is an open and bounded subset of R™. Suppose that f is an M-function,
for some o-minimal structure M.

a) Then there exists A > 0 such that all trajectories of —grad f have
length bounded by A.

b) More precisely, there exists o : Ry — R, a continuous strictly
increasing M-function, with lim;_,q o(t) = 0, such that if v is a trajectory
of —grad f and a,b € v, then

1v(a,b)| < o(|£(b) — f(a)))-
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Proof of theorem 2. — Taking, if necessary the composition 9 o f,
t
where ¥(t) = gk we may suppose that f is bounded; more exactly

that the image of f lies in (—1,1). We consider again the M-function
¢ :(=1,1) — R defined by
() =inf{||grad f(z)| : =€ f' ()},

when f71(t) # 0, and ¢(t) = 1 when f~1(t) = 0. Let ¥ be the set of
all asymptotic critical values of f. Observe that A € X if p(A) = 0, or
lim @(t) =0, or lim e(t)=0

Let I C (—1,1) be an open interval. Assume that ¢ is bounded from
below in I by some ¢ > 0. Let v be a trajectory of —grad f and a,b € 7.
Suppose that the part of v lying between a and b is contained in f~1(I).
We parametrise v by arc-length (i.e ||7/(s)|| = 1), so by the Mean Value
Theorem we have that |f o v(8) — f oy(a)| > ¢|B — a|, in other words

r(a,b)| < 115(6) ~ FO)1

This observation explains the idea of the proof. By a partition —1 = tg <
t1 < ... < ty = 1 we shall decompose (—1,1) in such a way that ¢ is
strictly monotone on (¢;,t;+1). Moreover we shall distinguish between two
disjoint types of intervals, namely

(1) there exists ¢; > 0 such that ¢(t) > ¢; on (t;,t;41) (we write ¢ € I
in this case), or

(2) one of t;, t;41 is an asymptotic critical value of f, hence by
Theorem 1, there exist ¢; > 0 and ¥, : (¢;,t;41) — R a strictly increasing,
bounded C* function such that,

lgrad (¥; o f)(z)|| > ¢
for all z € f~1(t;,ti+1) (we write i € I in this case).

Take now any trajectory v of —grad f, and let y; = yN f=1(t;, tiy1).
We denote by || (resp. |y;|) the length of v (resp. ;). Clearly |v;| <

—|t — ti+1] if ¢ € I;. Extending by continuity, we may suppose that
each VU, is defined also at t; and ¢;y;. Hence for i € I, we have |y;| <
—|\Il (t;) — U;(ti+1)]|, since the trajectories of —grad (¥; o f) and —grad f

are the same in f~1(t;,t;11). Finally, we can write

M=ZM<Z—WWM+24W Wiltia)| = A

=0 i€l i€l
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which proves part a) of Theorem 2.

We are now going to construct the function ¢ of part b). For ¢ € I,
we put

1
oi(r) = ;SUP“‘I’i(Z’) - ¥i(q)| : p,q € (ti,tix1), T=p—q},
1

T

and o;(r) = — for i € I,. Extend each o; to a continuous strictly increasing
Ci

M-function on R. It is easily seen that o = sup o; satisfies b) of Theorem 2.

We finish this section by a short discussion of some consequences of
Theorem 2, which extend and generalize those known in the real analytic
(compact) setting.

Observe that if v : (a,8) — U is a trajectory then zo = lir%’y(s)
s§—

exists, and in general xo belongs to U. Notice that if £y € U, then g is a
critical point of f. Let us take F a closed M-subset in an open set U; by
4.22 of [DM], E is the zero set of an M-function f : U — R of class C?.
Let g = f2. We want to show that the flow of —grad g defines a strong
deformation retraction of a neighborhood of E onto E. This is actually a
new result even in the subanalytic case since the retraction is global and
FE is not necessarily compact. By Proposition 2, taking a neighborhood of
E, we may suppose that 0 is the only asymptotic critical value of g in U.
Clearly the set

V={zeU: dist(z,0U) < o(g(z))}

is an M-sget, it is an open neighborhood of E. For each z € V' we denote by

Yz ¢ (g, Bz) — U the trajectory passing through z. It is clearly unique if

g(x) # 0 and constant (hence unique) if g(z) = 0. Put R(z) = lilg Yz (8),
S$— g

and observe that R(z) € E. We have:

PROPOSITION 3. — There exists an open neighborhood V; of E such
that R : Vi — FE is a strong deformation retraction.

Proof. — First we shall prove that R is continuous. Take zo € V and
Qo a neighborhood of R(z). Let 1 ¢ E be close to R(zg) so that there is
(by Theorem 2 b)) a neighborhood §; of z; with the following property:
any trajectory passing through €2; has its limit in Q. By continuity of
the flow of —grad g there exists a neighborhood G of zy such that any
trajectory passing by G must cross ;. So we have R(G) C o, which
proves the continuity of R.
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Let v be the trajectory passing through z. Let «, be the part of v
between z and the limit R(x). Assume that -y, : [0, 8;] — U is parametrized
by arc-length; moreover that v,(0) = z, and v;(8;) = R(x). Clearly 8, is
the length of ~,. Notice that the argument in the proof of continuity of R
yields that the function V 5 x — [, is continuous. Let V; be the set of all
z € V such that v, lies in V. We define a homotopy F : [0,1] x V; — V;
as follows: Fy(z) = V5 (t0z).

In general the retraction R is not an M-mapping. Take g(z,y) =
(z2—y3)?; it was observed by Hu [Hu] that the retraction R is not hoelderian
(at (0,0)) in this case, hence it cannot be subanalytic. Observe also that,
in general, the set V; is not an M-set. It would be interesting to prove
that actually R belongs to some larger o-minimal structure. Even a weaker
problem is open (also in the subanalytic case):

CoNJECTURE (F). — Let v be a trajectory of —grad f, where f is
an M-function of class C', and let H be any M-subset. Then v N H has a
finite number of connected components.

This is connected with the Gradient Conjecture of R. Thom, proved
recently in [KM]. R. Thom asked whether for an analytic function f every
trajectory v of —grad f has a tangent at the limit point (i.e. whether

V(s) — R(z)

im —————
s—0z |v(s) — R(z)|
trajectory of the gradient of any M-function of class C!.

exists). We can of course ask the same question for a

It is easily seen that (F) implies that lim
s— Bz

g 1Y ()l

exists, thus that

the tangent to v at the limit point exists.
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