KRZYSZTOF KURDYKA On gradients of functions definable in ominimal structures

Annales de l'institut Fourier, tome 48, nº 3 (1998), p. 769-783 http://www.numdam.org/item?id=AIF 1998 48 3 769 0>

© Annales de l'institut Fourier, 1998, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **48**, 3 (1998), 769–783

ON GRADIENTS OF FUNCTIONS DEFINABLE IN O-MINIMAL STRUCTURES

by Krzysztof KURDYKA

0. Introduction.

Many results in subanalytic or semialgebraic geometry of \mathbb{R}^n hold true in a more general setting called "the theory of o-minimal structures on the real field" (see [DM]). This theory has presented a strong interest since 1991 when A. Wilkie [W1] proved that a natural extension of the family of semialgebraic sets containing the exponential function ((\mathbb{R} , exp)definable sets) is an o-minimal structure. A similar extension of subanalytic sets ((\mathbb{R}_{an} , exp)-definable sets) was then treated by L. van den Dries, A. Macintyre, D. Marker in [DMM] (geometric proofs of these facts were found recently by J-M. Lion and J.-P. Rolin [LR1], [LR2]). Another type of o-minimal structure ((\mathbb{R}_{an}^K)-definable sets) was obtained by C. Miller [Mi], by adding to subanalytic sets all functions $x \to x^r$, $r \in K$, where K is a subfield of \mathbb{R} . We give a list and examples of o-minimal structures in section 1. An extension of semialgebraic and subanalytic geometry was also undertaken by M. Shiota [S1], [S2].

Theorem 1 (Section 2), the first main result of this paper, is an ominimal generalization of the famous Lojasiewicz inequality $\|\mathbf{grad} f\| \ge |f|^{\alpha}$ with $\alpha < 1$, where f is an analytic function in a neighborhood of $a \in \mathbb{R}^n$, f(a) = 0. We prove that if f is a differentiable function in a

This research was partially supported by KBN grant 0844/P3/94/07.

Key words: o-minimal structure – Subanalytic sets – Lojasiewicz inequalities – Trajectories of gradient.

Math. classification: 32B20 - 32B05 - 14P15 - 26E05 - 26E10 - 03C99.

bounded domain, definable in some o-minimal structure, then there exists a C^1 function Ψ in one variable such that $\|\mathbf{grad} \Psi \circ f\| \ge c > 0$. It is rather surprising that the result holds also for infinitely flat functions. Theorem 1 implies that the set of asymptotic critical values of f is finite (Proposition 2). We recall in the beginning of the section the already known o-minimal version of another Lojasiewicz inequality for continuous definable functions on a compact set.

The main result of Section 3 is Theorem 2 which states: if U is an open, bounded subset of \mathbb{R}^n , $f: U \to \mathbb{R}$ is a C^1 function definable in some o-minimal structure, then all trajectories of $-\mathbf{grad} f$ (*i.e.* solutions of the equation $\dot{x} = -\mathbf{grad} f$) have their length bounded by a constant independent of the trajectory. The function f may be unbounded and may not have a continuous extension on \overline{U} . We prove also, that for a non negative definable g, the flow of $-\mathbf{grad} g$ defines a deformation retraction onto $g^{-1}(0)$. Some applications of this result in the real analytic case can be found in [Si], [Sj]. We finish the paper by a discussion of Thom's Gradient Conjecture for o-minimal structures.

In Section 1 we gather basic facts on o-minimal structures. To make the paper self-contained and accessible for a wider audience we add a proof of Lemma 2 (on definable functions in one variable). We give also an elementary proof (suggested by C. Miller and J-M. Lion) of the curve selection lemma, the crucial tool in the proof of Theorem 1.

General references of various facts, when not specified, will be as follows: for semialgebraic geometry – [BCR], for subanalytic geometry – [BM] or [L4], for o-minimal structures – [DM].

In this paper we take the gradient with respect to the canonical euclidian metric in \mathbb{R}^n .

1. o-minimal structures on the real field.

DEFINITION 1. — Let $\mathcal{M} = \bigcup_{n \in \mathbb{N}} \mathcal{M}_n$, where each \mathcal{M}_n is a family of subsets of \mathbb{R}^n . We say that the collection \mathcal{M} is an o-minimal structure on $(\mathbb{R}, +, \cdot)$ if:

- (1) each \mathcal{M}_n is closed under finite set-theoretical operations;
- (2) if $A \in \mathcal{M}_n$ and $B \in \mathcal{M}_m$, then $A \times B \in \mathcal{M}_{n+m}$;

- (3) let $A \in \mathcal{M}_{n+m}$ and $\pi : \mathbb{R}^{n+m} \longrightarrow \mathbb{R}^n$ be projection on the first n coordinates, then $\pi(A) \in \mathcal{M}_n$;
- (4) let $f, g_1, ..., g_k \in \mathbb{Q}[X_1, ..., X_n]$, then $\{x \in \mathbb{R}^n : f(x) = 0, g_1(x) > 0, ..., g_k(x) > 0\} \in \mathcal{M}_n$;
- (5) \mathcal{M}_1 consists of all finite unions of open intervals and points.

For a fixed o-minimal structure \mathcal{M} on $(\mathbb{R}, +, \cdot)$ we say that A is an \mathcal{M} -set if $A \in \mathcal{M}_n$ for some $n \in \mathbb{N}$. We say that a function $f : A \longrightarrow \mathbb{R}^m$, where $A \subset \mathbb{R}^n$, is an \mathcal{M} -function if its graph is an \mathcal{M} -set.

Axiom (5) will be called the o-minimality of \mathcal{M} .

Examples. — We give below a list of o-minimal structures on $(\mathbb{R}, +, \cdot)$ (see also [DM] for detailed definitions and comparisons between the above examples) with examples of functions definable in those o-minimal structures:

- (1) Semialgebraic sets (by Tarski-Seidenberg); $f(x, y) = \sqrt{x^4 + y^4}$.
- (2) Global subanalytic sets (by Gabrielov); $f(x,y) = \frac{y}{\sin x}, x \in (0,\pi).$
- (3) (\mathbb{R} , exp)-definable sets (by Wilkie); $f(x, y) = x^2 \exp\left(-\frac{y^2}{x^4 + y^2}\right) \ln x.$
- (4) (\mathbb{R}_{an} , exp)-definable sets (by van den Dries, Macintyre, Marker); $f(x, y) = x^{\sqrt{2}} \ln(\sin y), x > 0, y \in (0, \pi).$
- (5) $(\mathbb{R}_{an}^{\mathbb{R}})$ -definable sets (by Miller); $f(x,y) = x^{\sqrt{2}} \exp\left(\frac{x}{y}\right), \ 0 < x < y < 1.$

Recently another example of an o-minimal structure was found by van den Dries and Speissegger [DS] which is larger than $\mathbb{R}_{an}^{\mathbb{R}}$ but polynomially bounded (*i.e.* any definable function in one variable is bounded by a polynomial at infinity). Finally we mention a result of Wilkie [W2] in which he gives a general method for construction of o-minimal structures; this method can be applied to Pfaffian functions.

In the rest of this paper \mathcal{M} will denote some fixed, but arbitrary, o-minimal structure on $(\mathbb{R}, +, \cdot)$. We will give now several elementary properties of \mathcal{M} -sets and \mathcal{M} -functions.

Remark 1. — Let E be an \mathcal{M} -set in \mathbb{R}^{n+1} . Axioms (1)-(4) imply

that the sets

 $\{x \in \mathbb{R}^n : \exists x_{n+1} \ (x, x_{n+1}) \in E\}$ and $\{x \in \mathbb{R}^n : \forall x_{n+1} \ (x, x_{n+1}) \in E\}$ are \mathcal{M} -sets. Actually the first set is the image of E by projection, the second is the complement of the image of the complement of E by projection.

Remark 2. — The sum, product, inverse, composition of \mathcal{M} -functions is again an \mathcal{M} -function. Also the image and inverse image of an \mathcal{M} -set by an \mathcal{M} -function are again \mathcal{M} -sets. Proofs of these facts are quite standard applications of Remark 1 and axioms (1)–(4) and actually the same as in the semialgebraic case (see e.g. [BCR]).

LEMMA 1. — Let $f : A \longrightarrow \mathbb{R}$ be an \mathcal{M} -function such that $f(x) \ge 0$ for all $x \in A$. Let $G : A \longrightarrow \mathbb{R}^m$ be an \mathcal{M} -mapping and define a function $\varphi : G(A) \longrightarrow \mathbb{R}$ by

$$\varphi(y) = \inf_{x \in G^{-1}(y)} f(x).$$

Then φ is an \mathcal{M} -function.

 $\label{eq:proof} \textit{Proof.} ~-~ \textit{Write a formula for the graph of the function φ and apply Remark 1.}$

COROLLARY 1. — Let A be an \mathcal{M} -set in \mathbb{R}^n . Then the distance function $d_A : \mathbb{R}^n \to \mathbb{R}$ is an \mathcal{M} -function, where $d_A(x) = \inf_{x \in A} |x - y|$.

COROLLARY 2. — Let A be an \mathcal{M} -set in \mathbb{R}^n . Then \overline{A} and Int A are \mathcal{M} -sets.

Proof. — Actually by Corollary 1 we know that d_A is an \mathcal{M} -function, hence $\overline{A} = d_A(0)^{-1}$ is an \mathcal{M} -set. To prove that the interior of A is an \mathcal{M} -set we use the fact that by axiom (1) the complement of an \mathcal{M} -set is an \mathcal{M} -set.

LEMMA 2 (Monotonicity Theorem). — Let $f : (a, b) \longrightarrow \mathbb{R}$ be an \mathcal{M} -function. Then there exist real numbers $a = a_0 < a_1 < \ldots < a_k = b$ such that f is continuously differentiable on each interval (a_i, a_{i+1}) . Moreover f' is an \mathcal{M} -function and the function f is strictly monotone or constant on every interval (a_i, a_{i+1}) .

Proof (Due essentially to van den Dries [vD]). — We may assume that the set f((a, b)) is infinite. First we prove that D(f), the set of discontinuity points of f, is finite.

772

ON GRADIENTS OF FUNCTIONS DEFINABLE IN O-MINIMAL STRUCTURES 773

Writing the definition of continuity of a function at a point and using Remark 1 we deduce that D(f) is an \mathcal{M} -set in \mathbb{R} , hence by o-minimality, it is enough to prove that f is continuous at some point of (a, b). Since the set f((a, b)) is an infinite \mathcal{M} -set it contains an open interval. Thus by induction we can construct a descending sequence of intervals $[\alpha_n, \beta_n] \subset (a, b)$ such that $\alpha_n < \alpha_{n+1}, \beta_{n+1} < \beta_n, \beta_n - \alpha_n < 1/n$ and $f([\alpha_n, \beta_n])$ is contained in an interval of length smaller than 1/n. Clearly f is continuous at the point $\bigcap_{n \in \mathbb{N}} [\alpha_n, \beta_n]$. So we have proved that the complement of D(f) is dense in (a, b), hence D(f) is finite.

We can assume now that f is continuous on (a, b). To prove differentiability observe first that by o-minimality we have:

OBSERVATION. — For each $x \in (a, b)$ and each $c \in \mathbb{R}$ there exists an $\varepsilon > 0$ such that $f(t) \ge f(x) + c(t - x)$ for all $t \in (x, x + \varepsilon)$ or $f(t) \le f(x) + c(t - x)$ for all $t \in (x, x + \varepsilon)$.

Let us write $f'_{-}(x) = \lim_{t \neq 0} \frac{1}{t}(f(x+t) - f(x))$ for $x \in (a, b]$ and $f'_{+}(x) = \lim_{t \searrow 0} \frac{1}{t}(f(x+t) - f(x))$ for $x \in [a, b)$. Note that f'_{+} and f'_{-} are \mathcal{M} -functions, by Remark 1. From the above observation it is not difficult to obtain the following consequences:

i) for each $x \in (a, b)$ the values of $f'_{-}(x)$ and $f'_{+}(x)$ are well defined (possibly equal to $+\infty$ or $-\infty$),

ii) for each $x \in (a, b)$ there exists y arbitrary close to x, y > x such that $f'_+(y) \leq f'_+(x), f'_-(y) \leq f'_+(x)$ or $f'_+(y) \geq f'_+(x), f'_-(y) \geq f'_+(x)$.

Clearly the sets

 $\{x \in (a,b); f'_+(x) = +\infty\}, \ \{x \in (a,b); f'_+(x) = -\infty\}$

are \mathcal{M} -sets, hence are finite unions of open intervals and points. By ii) these sets are finite. So we can assume that f'_+ and f'_- take values in \mathbb{R} . Since f'_+ and f'_- are \mathcal{M} -functions we may also assume that these functions are continuous on (a, b). It follows easily now from ii) that $f'_+ = f'_-$ on (a, b), but this means that f is \mathcal{C}^1 on (a, b).

We proved also that f' is an \mathcal{M} -function, hence the claim on monotonicity follows from the fact that $\{f' = 0\}$ is an \mathcal{M} -set and so is a finite union of points and open intervals.

Writing the definition of partial derivatives and using Remark 1 we obtain:

LEMMA 3. — Let $f : U \longrightarrow \mathbb{R}^k$ be a differentiable \mathcal{M} -function, where U is open in \mathbb{R}^n . Then $\partial f/\partial x_j$, $j = 1, \ldots, n$ are \mathcal{M} -functions, and hence grad f is an \mathcal{M} -mapping.

PROPOSITION 1 (Curve Selection Lemma). — Let A be an \mathcal{M} -set in \mathbb{R}^n and suppose that $a \in \overline{A \setminus \{a\}}$. Then there exists an \mathcal{M} -function $\gamma : [0, \varepsilon) \longrightarrow \mathbb{R}^n$ which is \mathcal{C}^1 on $[0, \varepsilon)$ and such that

$$a = \gamma(0) \text{ and } \gamma((0, \varepsilon)) \subset A \setminus \{a\}.$$

Proof. — The key point is to construct a "definable" selection operator e, which assigns to each nonempty set $A \in \mathcal{M}_n$ an element $e(A) \in A$. Let n = 1. Then e(A) is the smallest element of A if A has one. Otherwise, let $a := \inf A$ and let $b \in \mathbb{R} \cup \{+\infty\}$ be maximal such that $(a, b) \subseteq A$. If $a, b \in \mathbb{R}$, then e(A) := (a+b)/2. If $a \in \mathbb{R}$ and $b = +\infty$, then e(A) := a+1. If $a = -\infty$ and $b \in \mathbb{R}$, then e(A) := b - 1. If $a = -\infty$ and $b = +\infty$ (i.e., $A = \mathbb{R}$), then e(A) := 0. Assume e(A) has been defined for all nonempty $A \in \mathcal{M}_n$. Let $B \in \mathcal{M}_{n+1}$ be nonempty, and let A be its image in \mathbb{R}^n under the projection map $(x_1, \ldots, x_n, x_{n+1}) \mapsto (x_1, \ldots, x_n)$. Put a := e(A). Then $e(B) := (a, e(B_a))$ where $B_a := \{r \in \mathbb{R} : (a, r) \in B\}$.

This selection operator e has several applications, and Curve Selection is only one of them: let $A \in \mathcal{M}_n$ and $a \in \overline{A \setminus \{a\}}$. By o-minimality the set $\{|a - x| : x \in A\} \in \mathcal{M}_1$ contains an interval $(0, \epsilon), \epsilon > 0$. For $0 < t < \epsilon$, let $\gamma(t) := e(\{x \in A : |a - x| = t\})$. It is routine to check that $\gamma : (0, \epsilon) \to A$ belongs to \mathcal{M} . By the monotonicity theorem γ is C^1 after suitable shrinking of ϵ . After composition on the right with a sufficiently flat (at 0) function in \mathcal{M} (e.g. the inverse of the bigest component of γ) we can further arrange that γ extends to a C^1 -function on $[0, \epsilon)$.

2. Łojasiewicz inequalities for o-minimal structures.

We begin this section recalling an already well-known generalization of the Lojasiewicz inequality for continuous \mathcal{M} -functions on a compact set. This result was observed by T. Loi [Lo] for (\mathbb{R} , exp)-definable sets (actually his version is more precise than the theorem stated below); M. Shiota [S1], [S2] and L. van den Dries and C. Miller [DM] also noticed this fact.

THEOREM 0. — Let K be a compact subset of \mathbb{R}^n and let $f, g : K \longrightarrow \mathbb{R}$ be two continuous \mathcal{M} -functions. If $f^{-1}(0) \subset g^{-1}(0)$, then there

exists a strictly increasing positive \mathcal{M} -function $\sigma : \mathbb{R}_+ \to \mathbb{R}$ of class C^1 , such that for any $x \in K$ we have

$$|f(x)| \ge \sigma(g(x)).$$

The idea of the proof goes back to the original argument of Lojasiewicz (see [L2], [KLZ]). Let $\Sigma \subset \mathbb{R}^2$ be the image of K by the mapping $K \ni u \to (g(u), f(u)) = (x, y)$. Clearly Σ is an \mathcal{M} -set; moreover it is compact and $\Sigma \cap \{y = 0\} = \{(0, 0)\}$. It is not difficult to find (by Lemma 2) a strictly increasing positive \mathcal{M} -function $\sigma : \mathbb{R}_+ \to \mathbb{R}$ of class C^1 , such that $\Sigma \subset \{y \ge \sigma(x), x \ge 0\}$. It is proved in [DM] that for each $k \in \mathbb{N}$ one can find σ of class C^k .

We state now the main result of this section. Recall that \mathcal{M} is any fixed o-minimal structure on $(\mathbb{R}, +, \cdot)$.

THEOREM 1. — Let $f: U \longrightarrow \mathbb{R}$ be a differentiable \mathcal{M} -function, where U is an open and bounded subset of \mathbb{R}^n . Suppose that f(x) > 0 for all $x \in U$. Then there exists c > 0, $\rho > 0$ and a strictly increasing positive \mathcal{M} -function $\Psi : \mathbb{R}_+ \to \mathbb{R}$ of class C^1 , such that

$$\|\mathbf{grad}\,(\Psi\circ f)(x)\| \geq c,$$

for each $x \in U$, $f(x) \in (0, \rho)$.

The proof is given in the end of the section. We shall see now that in the subanalytic case our Theorem 1 is equivalent to the classical Lojasiewicz inequality for gradients of analytic functions (see [L1], [L2], [BM]). We state this result in the form generalized in [KP]:

THEOREM (LI). — Let $f: \Omega \longrightarrow \mathbb{R}$ be a subanalytic function which is differentiable in $\Omega \setminus f^{-1}(0)$, where Ω is an open bounded subset of \mathbb{R}^n . Then there exist $C > 0, \rho > 0$ and $0 \le \alpha < 1$ such that:

$$\|\operatorname{\mathbf{grad}} f(x)\| \geq C |f(x)|^{\alpha},$$

for each $x \in \Omega$ such that $|f(x)| \in (0, \rho)$. If in addition $\lim_{x \to a} f(x) = 0$ for some $a \in \overline{\Omega}$ (which holds in the classical case, where f is analytic and $a \in \Omega$, f(a) = 0), then the above inequality holds for each $x \in \Omega \setminus f^{-1}(0)$ close to a.

To see that in the subanalytic case (LI) \Rightarrow Theorem 1 it is enough to put $\Psi(t) = t^{1-\alpha}$. To prove the converse in the subanalytic case, recall first that every subanalytic function in one variable is actually semianalytic (see [L2], [KLZ]). Hence Ψ has the Puiseux expansion of the form $\Psi(t) = \sum_{\nu=0}^{\infty} a_{\nu} t^{\frac{\nu}{k}}$. Thus, for t small enough we have $|\Psi'(t)| \leq D t^{\frac{1}{k}-1}$ for some D > 0. The last inequality and Theorem 1 yield

$$\|\operatorname{\mathbf{grad}} f(x)\| = rac{\|\operatorname{\mathbf{grad}} (\Psi \circ f)(x)\|}{|\Psi' f(x)|} \ge rac{c}{D} |f(x)|^{1-rac{1}{k}}.$$

Remark. — The above argument and Theorem 1 imply that (LI) holds in any polynomially bounded o-minimal structure on $(\mathbb{R}, +, \cdot)$.

We discuss now a consequence of Theorem 1. Let $f: U \longrightarrow \mathbb{R}$ be a differentiable function, where U is an open subset of \mathbb{R}^n . We shall say that $\lambda \in \mathbb{R} \cup \{-\infty, +\infty\}$ is an asymptotic critical value of f if there exists a sequence $x_n \in U$ such that

$$f(x_n) \to \lambda$$
 and grad $f(x_n) \to 0$.

Clearly any "true" critical value of f (i.e $\lambda = f(x)$ and grad f(x) = 0, for some $x \in U$) is also an asymptotic critical value. Notice that this notion depends heavily on the domain U, in particular on whether U is bounded or not.

Suppose now that U is bounded and that our f is an \mathcal{M} -function, where \mathcal{M} is an o-minimal structure on $(\mathbb{R}, +, \cdot)$. Let λ be an asymptotic critical value of f. It follows immediately from Theorem 1 that f has no asymptotic critical values in $(\lambda - \rho, \lambda) \cup (\lambda, \lambda + \rho)$ for some $\rho > 0$. But on the other hand the set of all asymptotic critical values of f is an \mathcal{M} -subset of \mathbb{R} , so it must be finite. Thus we have proved:

PROPOSITION 2. — If U is bounded and f is an \mathcal{M} -function, then the set of all asymptotic critical values of f is finite.

It is easily seen that $-\infty$ and $+\infty$ cannot be an asymptotic critical value of an \mathcal{M} -function defined in a bounded set. As the following example shows the assumption of boundness on U is necessary.

Example. — The function $f(x, y) = \frac{x}{y}$ on $U = \{y > 0\} \subset \mathbb{R}^2$, being semialgebraic, belongs to any o-minimal structure on $(\mathbb{R}, +, \cdot)$. But clearly any $\lambda \in \mathbb{R}$ is an asymptotic critical value of f.

Proof of Theorem 1. — It follows from Lemma 3 that $U \ni x \mapsto$ $\|\mathbf{grad} f(x)\|$ is an \mathcal{M} -function. We may suppose that $f^{-1}(t) \neq \emptyset$ for any small enough t > 0, since otherwise, by o-minimality, the theorem is trivial. Hence the function

$$arphi(t) \ = \inf\{\|\mathbf{grad}\ f(x)\|:\ x\in f^{-1}(t)\}$$

is well-defined in some interval $(0, \varepsilon)$. By Lemma 1, φ is an \mathcal{M} -function.

CLAIM. — There exists
$$\varepsilon' > 0$$
 such that $\varphi(t) > 0$ for any $t \in (0, \varepsilon')$.

Assume that this is not the case and put

$$\Sigma = \{x \in U : \| \operatorname{grad} f(x) \| < (f(x))^2 \}.$$

Clearly Σ is an \mathcal{M} -set. Let $f|_{\Sigma}$ denote the graph of f restricted to Σ . If the claim doesn't hold, then there exists a sequence of positive numbers $t_n \to 0$ such that $\varphi(t_n) = 0$ for all $n \in \mathbb{N}$. Let $x_n \in \Sigma$ be a sequence such that $f(x_n) = t_n$, in other words $(x_n, t_n) \in f|_{\Sigma}$. Let b be an accumulation point of $\{x_n\}$, then (b,0) belongs to the closure of the set $(f|_{\Sigma} \setminus \{(b,0)\})$. By the curve selection lemma (Proposition 1) we have an \mathcal{M} -function (arc) $\tilde{\gamma}: (-\delta, \delta) \to \mathbb{R}^n \times \mathbb{R}$ of class C^1 , such that $\tilde{\gamma}(0) = (b,0)$, and $\tilde{\gamma}(0,\delta) \subset f|_{\Sigma}$. Write $\tilde{\gamma}(s) = (\gamma(s), f \circ \gamma(s))$, where $\gamma(s) \in \Sigma \subset \mathbb{R}^n$. Let $h(s) = f \circ \gamma(s)$ for $s \in (0, \delta)$, then clearly $\lim_{s \to 0} h(s) = 0 = \lim_{s \to 0} h'(s)$, since $\gamma(s) \in \Sigma$. Of course h and h' are \mathcal{M} -functions, so by Lemma 2 we may suppose that h and h'are monotone; actually they must be strictly increasing. Thus we have

$$0 < h'(s) \le A(h(s))^2$$
, for $s \in (0, \delta)$,

where A is a bound for $\|\gamma'(s)\|$. But by the Mean Value Theorem we have $h(s) \leq s h'(s)$, because h' is increasing. Finally, we get $0 < h'(s) \leq As^2(h'(s))^2$ for any $s \in (0, \delta)$, which is impossible since $\lim_{s \to 0} h'(s) = 0$.

So we have proved that $\varphi(t) > 0$ for all $t \in (0, \varepsilon)$, provided that $\varepsilon > 0$ is small enough. We define now:

$$\Delta = \{ x \in U \setminus f^{-1}(0) : f(x) < \varepsilon, \| \operatorname{grad} f(x) \| \le 2\varphi(f(x)) \}.$$

Observe that Δ is also an \mathcal{M} -set and moreover $\Delta \cap f^{-1}(t) \neq \emptyset$ for every $t \in (0, \varepsilon)$. Hence as before there exists $d \in \overline{U}$ such that $(d, 0) \in \overline{f|_{\Delta} \setminus \{(d, 0)\}}$. Applying again the curve selection lemma to $f|_{\Delta}$ at the point (d, 0) we obtain an \mathcal{M} -function (arc) $\tilde{\eta} : (-\delta, \delta) \to \mathbb{R}^n$ of class C^1 , such that $\tilde{\eta}(0) = (d, 0)$, and $\tilde{\eta}(0, \delta) \subset f|_{\Delta}$. Write as before $\tilde{\eta}(s) = (\eta(s), f \circ \eta(s))$, where $\eta(s) \in \Delta \subset \mathbb{R}^n$. Let $g(s) = f \circ \eta(s)$ for $s \in (0, \delta)$, then clearly $\lim_{s \to 0} g(s) = 0$ and g(s) > 0 for each $s \in (0, \delta)$. It follows from Lemma 2 that for $\delta' > 0$ small enough the function $g: (0, \delta') \longrightarrow \mathbb{R}$ is a diffeomorphism onto $(0, \rho)$, for some $\rho > 0$. We put

$$\Psi(t) = g^{-1}(t)$$
 for $t \in (0, \rho)$.

We shall check now the inequality claimed in Theorem 1. Let B be some bound for $\|\eta'(s)\|$ in $(0, \delta')$. Take any $x \in U$ such that $t = f(x) \in (0, \rho)$, and write $s = \Psi(t) = g^{-1}(t)$. Then we have

$$\begin{aligned} \|\mathbf{grad}\,\Psi\circ f(x)\| &= \Psi'(f(x))\|\mathbf{grad}\,f(x)\|\\ &\geq \Psi'(t)\frac{1}{2}\|\mathbf{grad}\,f(\eta(s))\| \geq \frac{\Psi'(t)}{2B}(f\circ\eta)'(s) = \frac{1}{2B} = c, \end{aligned}$$

since $\|\operatorname{\mathbf{grad}} f(\eta(s))\| \|\eta'(s)\| \ge \langle \operatorname{\mathbf{grad}} f(\eta(s)), \eta'(s) \rangle = (f \circ \eta)'(s)$ and $B \ge \|\eta'(s)\|$. Theorem 1 follows.

3. Trajectories of gradients of \mathcal{M} -functions.

Let $f: U \longrightarrow \mathbb{R}$ be a C^1 function, where U is an open subset of \mathbb{R}^n . We shall consider a vector field,

$$U \ni x \mapsto -\mathbf{grad} f(x) \in \mathbb{R}^n.$$

Let $\alpha, \beta \in \mathbb{R} \cup \{-\infty, +\infty\}$. We shall say that $\gamma : (\alpha, \beta) \to U$ is a trajectory of the vector field $-\operatorname{grad} f$ if it is a maximal differentiable curve verifying $\gamma'(t) = -\operatorname{grad} f(\gamma(s))$. Actually we shall consider γ as an equivalence class of all curves obtained from γ by a strictly increasing C^1 reparametrization. Observe that if ψ is an increasing C^1 diffeomorphism between two intervals in \mathbb{R} , then the trajectories of $-\operatorname{grad} \psi \circ f$ and those of $-\operatorname{grad} f$ are the same.

Let $a, b \in \gamma$. We denote by $|\gamma(a, b)|$ the length of γ between a and b.

Lojasiewicz derived (see [L1], [L3]) from (LI) that all trajectories of $-\operatorname{grad} f$ are of finite length, when f is analytic in a neighborhood of a compact \overline{U} . We have:

THEOREM 2. — Let $f: U \longrightarrow \mathbb{R}$ be a function of class C^1 , where U is an open and bounded subset of \mathbb{R}^n . Suppose that f is an \mathcal{M} -function, for some o-minimal structure \mathcal{M} .

a) Then there exists A > 0 such that all trajectories of $-\operatorname{grad} f$ have length bounded by A.

b) More precisely, there exists $\sigma : \mathbb{R}_+ \to \mathbb{R}_+$ a continuous strictly increasing \mathcal{M} -function, with $\lim_{t\to 0} \sigma(t) = 0$, such that if γ is a trajectory of $-\operatorname{grad} f$ and $a, b \in \gamma$, then

$$|\gamma(a,b)| \le \sigma(|f(b) - f(a)|).$$

Proof of theorem 2. — Taking, if necessary the composition $\psi \circ f$, where $\psi(t) = \frac{t}{\sqrt{1+t^2}}$, we may suppose that f is bounded; more exactly that the image of f lies in (-1, 1). We consider again the \mathcal{M} -function $\varphi: (-1, 1) \to \mathbb{R}$ defined by

$$\varphi(t) = \inf\{\|\operatorname{grad} f(x)\|: x \in f^{-1}(t)\},\$$

when $f^{-1}(t) \neq \emptyset$, and $\varphi(t) = 1$ when $f^{-1}(t) = \emptyset$. Let Σ be the set of all asymptotic critical values of f. Observe that $\lambda \in \Sigma$ if $\varphi(\lambda) = 0$, or $\lim_{t \neq \lambda} \varphi(t) = 0$, or $\lim_{t \neq \lambda} \varphi(t) = 0$.

Let $I \subset (-1,1)$ be an open interval. Assume that φ is bounded from below in I by some c > 0. Let γ be a trajectory of $-\mathbf{grad} f$ and $a, b \in \gamma$. Suppose that the part of γ lying between a and b is contained in $f^{-1}(I)$. We parametrise γ by arc-length (*i.e* $\|\gamma'(s)\| = 1$), so by the Mean Value Theorem we have that $|f \circ \gamma(\beta) - f \circ \gamma(\alpha)| \ge c |\beta - \alpha|$, in other words

$$|\gamma(a,b)| \leq \frac{1}{c} |f(b) - f(b)|.$$

This observation explains the idea of the proof. By a partition $-1 = t_0 < t_1 < \ldots < t_k = 1$ we shall decompose (-1, 1) in such a way that φ is strictly monotone on (t_i, t_{i+1}) . Moreover we shall distinguish between two disjoint types of intervals, namely

(1) there exists $c_i > 0$ such that $\varphi(t) \ge c_i$ on (t_i, t_{i+1}) (we write $i \in I_1$ in this case), or

(2) one of t_i, t_{i+1} is an asymptotic critical value of f, hence by Theorem 1, there exist $c_i > 0$ and $\Psi_i : (t_i, t_{i+1}) \to \mathbb{R}$ a strictly increasing, bounded C^1 function such that,

$$\|\mathbf{grad} (\Psi_i \circ f)(x)\| \geq c_i$$

for all $x \in f^{-1}(t_i, t_{i+1})$ (we write $i \in I_2$ in this case).

1.

Take now any trajectory γ of $-\mathbf{grad} f$, and let $\gamma_i = \gamma \cap f^{-1}(t_i, t_{i+1})$. We denote by $|\gamma|$ (resp. $|\gamma_i|$) the length of γ (resp. γ_i). Clearly $|\gamma_i| \leq \frac{1}{c_i}|t_i - t_{i+1}|$ if $i \in I_1$. Extending by continuity, we may suppose that each Ψ_i is defined also at t_i and t_{i+1} . Hence for $i \in I_2$ we have $|\gamma_i| \leq \frac{1}{c_i}|\Psi_i(t_i) - \Psi_i(t_{i+1})|$, since the trajectories of $-\mathbf{grad} (\Psi_i \circ f)$ and $-\mathbf{grad} f$ are the same in $f^{-1}(t_i, t_{i+1})$. Finally, we can write

$$|\gamma| = \sum_{i=0}^{\kappa-1} |\gamma_i| \le \sum_{i \in I_1} \frac{1}{c_i} |t_i - t_{i+1}| + \sum_{i \in I_2} \frac{1}{c_i} |\Psi_i(t_i) - \Psi_i(t_{i+1})| = A,$$

which proves part a) of Theorem 2.

We are now going to construct the function σ of part b). For $i \in I_2$ we put

$$\sigma_i(r) = rac{1}{c_i} \sup\{|\Psi_i(p) - \Psi_i(q)| : \ p,q \in (t_i,t_{i+1}), \ r=p-q\},$$

and $\sigma_i(r) = \frac{r}{c_i}$ for $i \in I_1$. Extend each σ_i to a continuous strictly increasing \mathcal{M} -function on \mathbb{R} . It is easily seen that $\sigma = \sup \sigma_i$ satisfies b) of Theorem 2.

We finish this section by a short discussion of some consequences of Theorem 2, which extend and generalize those known in the real analytic (compact) setting.

Observe that if $\gamma : (\alpha, \beta) \to U$ is a trajectory then $x_0 = \lim_{s \to \beta} \gamma(s)$ exists, and in general x_0 belongs to \overline{U} . Notice that if $x_0 \in U$, then x_0 is a critical point of f. Let us take E a closed \mathcal{M} -subset in an open set U; by 4.22 of [DM], E is the zero set of an \mathcal{M} -function $f : U \to \mathbb{R}$ of class C^2 . Let $g = f^2$. We want to show that the flow of $-\mathbf{grad} g$ defines a strong deformation retraction of a neighborhood of E onto E. This is actually a new result even in the subanalytic case since the retraction is global and E is not necessarily compact. By Proposition 2, taking a neighborhood of E, we may suppose that 0 is the only asymptotic critical value of g in U. Clearly the set

$$V = \{x \in U : \operatorname{dist}(x, \partial U) < \sigma(g(x))\}$$

is an \mathcal{M} -set, it is an open neighborhood of E. For each $x \in V$ we denote by $\gamma_x : (\alpha_x, \beta_x) \to U$ the trajectory passing through x. It is clearly unique if $g(x) \neq 0$ and constant (hence unique) if g(x) = 0. Put $R(x) = \lim_{s \to \beta_x} \gamma_x(s)$, and observe that $R(x) \in E$. We have:

PROPOSITION 3. — There exists an open neighborhood V_1 of E such that $R: V_1 \longrightarrow E$ is a strong deformation retraction.

Proof. — First we shall prove that R is continuous. Take $x_0 \in V$ and Ω_0 a neighborhood of $R(x_0)$. Let $x_1 \notin E$ be close to $R(x_0)$ so that there is (by Theorem 2 b)) a neighborhood Ω_1 of x_1 with the following property: any trajectory passing through Ω_1 has its limit in Ω_0 . By continuity of the flow of $-\mathbf{grad} g$ there exists a neighborhood G of x_0 such that any trajectory passing by G must cross Ω_1 . So we have $R(G) \subset \Omega_0$, which proves the continuity of R.

ON GRADIENTS OF FUNCTIONS DEFINABLE IN O-MINIMAL STRUCTURES 781

Let γ be the trajectory passing through x. Let γ_x be the part of γ between x and the limit R(x). Assume that $\gamma_x : [0, \beta_x] \to U$ is parametrized by arc-length; moreover that $\gamma_x(0) = x$, and $\gamma_x(\beta_x) = R(x)$. Clearly β_x is the length of γ_x . Notice that the argument in the proof of continuity of R yields that the function $V \ni x \to \beta_x$ is continuous. Let V_1 be the set of all $x \in V$ such that γ_x lies in V. We define a homotopy $F : [0, 1] \times V_1 \longrightarrow V_1$ as follows: $F_t(x) = \gamma_x(t\beta_x)$.

In general the retraction R is not an \mathcal{M} -mapping. Take $g(x, y) = (x^2 - y^3)^2$; it was observed by Hu [Hu] that the retraction R is not hoelderian (at (0,0)) in this case, hence it cannot be subanalytic. Observe also that, in general, the set V_1 is not an \mathcal{M} -set. It would be interesting to prove that actually R belongs to some larger o-minimal structure. Even a weaker problem is open (also in the subanalytic case):

CONJECTURE (F). — Let γ be a trajectory of $-\operatorname{grad} f$, where f is an \mathcal{M} -function of class C^1 , and let H be any \mathcal{M} -subset. Then $\gamma \cap H$ has a finite number of connected components.

This is connected with the Gradient Conjecture of R. Thom, proved recently in [KM]. R. Thom asked whether for an analytic function f every trajectory γ of $-\mathbf{grad} f$ has a tangent at the limit point (*i.e.* whether $\lim_{s \to \beta_x} \frac{\gamma(s) - R(x)}{|\gamma(s) - R(x)|}$ exists). We can of course ask the same question for a trajectory of the gradient of any \mathcal{M} -function of class C^1 .

It is easily seen that (F) implies that $\lim_{s\to\beta_x}\frac{\gamma'(s)}{|\gamma'(s)|}$ exists, thus that the tangent to γ at the limit point exists.

BIBLIOGRAPHY

- [BM] E. BIERSTONE P.D. MILMAN, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math., 67 (1988), 5–42.
- [BCR] J. BOCHNAK, M. COSTE, M.-F. ROY, Géométrie algébrique réelle, Springer, 1987.
- [vD] L. van den DRIES, Remarks on Tarski's problem concerning (ℝ, +, ·), Logic Colloquium 1982, (eds: G. Lolli, G. Longo, A. Marcja), North Holland, Amsterdam, 1984, 97–121.
- [DMM] L. van den DRIES, A. MACINTYRE, D. MARKER, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., 140 (1994), 183– 205.
 - [DM] L. van den DRIES, C. MILLER, Geometric categories and o-minimal structures, Duke Math. J., 84, No 2 (1996), 497–540.
 - [DS] L. van den DRIES, P. SPEISSEGGER, The real field with generalized power series is model complete and o-minimal, Trans. AMS (to appear).
 - [Hu] X. HU, Sur la structure des champs de gradients de fonctions analytiques réelles, Thèse Université Paris 7 (1992).
 - [KLZ] K. KURDYKA, S. LOJASIEWICZ, M. ZURRO, Stratifications distinguées comme outil en géométrie semi-analytique, Manuscripta Math., 186 (1995), 81–102.
 - [KM] K. KURDYKA, T. MOSTOWSKI, The Gradient Conjecture of R. Thom, preprint (1996).
 - [KP] K. KURDYKA, A. PARUSIŃSKI, w_f-stratification of subanalytic functions and the Lojasiewicz inequality, C. R. Acad. Sci. Paris, 318, Série I (1994), 129–133.
 - [LR1] J-M. LION, J.-P. ROLIN, Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier, Grenoble, 47-3 (1997), 852–884.
 - [LR2] J-M. LION, J.-P. ROLIN, Théorème de Gabrielov et fonctions log-exp-algébriques, preprint (1996).
 - [Lo] T. LOI, On the global Łojasiewicz inequalities for the class of analytic logarithmicexponential functions, Ann. Inst. Fourier, Grenoble, 45-4 (1995), 951-971.
 - [L1] S. LOJASIEWICZ, Une propriété topologique des sous-ensembles analytiques réels, Colloques Internationaux du CNRS, Les équations aux dérivées partielles, vol 117, ed. B. Malgrange (Paris 1962), Publications du CNRS, Paris, 1963.
 - [L2] S. LOJASIEWICZ, Ensembles semi-analytiques, Inst. Hautes Études Sci., Bures-sur-Yvette, 1965.
 - [L3] S. LOJASIEWICZ, Sur les trajectoires du gradient d'une fonction analytique réelle, Seminari di Geometria 1982-83, Bologna, 1984, 115–117.
 - [L4] S. LOJASIEWICZ, Sur la géométrie semi- et sous-analytique, Ann. Inst. Fourier, Grenoble, 43-5 (1993), 1575–1595.
 - [Mi] C. MILLER, Expansion of the real field with power functions, Ann. Pure Appl. Logic, 68 (1994), 79–94.
 - [S1] M. SHIOTA, Geometry of subanalytic and semialgebraic sets: abstract, Real analytic and algebraic geometry, Trento 1992, eds. F. Broglia, M. Galbiati, A. Tognoli, W. de Gruyter, Berlin, 1995, 251–276.

- [S2] M. SHIOTA, Geometry of subanalytic and semialgebraic sets, Birkhauser, 1997.
- [Si] L. SIMON, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Ann. of Math., 118 (1983), 527–571.
- [Sj] R. SJAMAAR, Convexity properties of the moment mapping re-examined, Adv. of Math., to appear.
- [W1] A. WILKIE, Model completness results for expansions of the ordered field of reals by restricted Pffafian functions and the exponential function, J. Amer. Math. Soc., 9 (1996), 1051–1094.
- [W2] A. WILKIE, A general theorem of the complement and some new o-minimal structures, manuscript (1996).

Manuscrit reçu le 15 septembre 1997, accepté le 13 janvier 1998.

Krzystof KURDYKA, Université de Savoie Laboratoire de Mathématiques Campus Scientifique 73376 Le Bourget-du-Lac Cedex (France). kurdyka@univ-savoie.fr and Uniwersytet Jagielloński Instytut Matematyki ul. Reymonta 4 30-059 Kraków (Poland). kurdyka@im.uj.edu.pl