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ON THE COMPLEX AND CONVEX
GEOMETRY OF OI/SHANSKII SEMIGROUPS

by Karl-Hermann NEEB

Introduction.

Let K be a connected real Lie group with compact Lie algebra and K(^
its complexification which is a complex reductive Lie group. Let t C ^ be
a Cartan subalgebra. Each JC-biinvariant domain D C K<^ can be written
as D = KexpVK, where V C ii is a domain which is invariant under the
Weyl group of K, we call it the base of D. In [AL92] Azad and Loeb give
a characterization of the JC-biinvariant plurisubharmonic functions on D
under the assumption that V is convex. Moreover, they obtain a description
of the holomorphy hulls of biinvariant domains which previously has been
derived by Lasalle (cf. [Las78]). Of course these results have even simpler
interpretations in the case G is abelian. If G is a vector space, then the
G-invariant domains of holomorphy are the convex tube domains and if
G = (S1)71 is a torus, then GC ^ (C*)71 and the G-invariant domains of
holomorphy are the logarithmically convex Reinhardt domains.

In this paper we will generalize the "biinvariant" results to the
following setting. Let Q be a finite dimensional real Lie algebra with a
compactly embedded Cartan subalgebra t. Under some mild additional
assumptions on the corresponding root system, there exists a generating
invariant closed convex cone Wmax in fl which is maximal with respect to
the property that all elements in its interior are elliptic, i.e., conjugate
to elements of t. In the special case of a compact Lie algebra we have

Key words: Complex semigroup - Stein manifold - Subharmonic function - Envelope of
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^max = 05 but our setting also incorporates hermitian simple Lie algebras,
a certain class of solvable Lie algebras and also a lot of mixed Lie algebras
which are neither reductive nor solvable.

Let G be a connected group with Lie algebra Q and H^ax = mt ^max
denote the interior of TVmax- To the cone Wmax we associate a certain
connected complex manifold 5'max = GExp(iW^) which carries a holo-
morphic semigroup multiplication and which looks infinitesimally like the
tube Q + zH^ax- The semigroup 5'max is a connected complex group G<c
in the case where Q is compact. Our first objective, which will be achieved
in Section 3, is the characterization of the G-biinvariant plurisubharmonic
funtions on biinvariant domains D C 5'max. To explain this characteriza-
tion, we write D as D = GExp(D^), where Dh C zTV^ax is a G-invariant
domain. Then a biinvariant function y? on D is plurisubharmonic if and
only if the corresponding function on D^, is locally convex. We also prove a
strict version of this result and show that if D^ intersects a Weyl chamber
in a convex set, then each biinvariant plurisubharmonic function can be
extended to the domain GExp(conv-D^) C Smax-

In this paper we will significantly use the results from [Ne96a]
concerning the G-invariant subsets of the open cone W^ax ana invariant
functions on them. Let G C H^ax be an invariant subset and G := G D t.
The main result in [Ne96a] is a characterization of the locally convex
functions on domains G by convexity and monotonicity properties of their
restrictions to G. Moreover, it contains the result that the restriction
mapping from smooth and continuous invariant functions on T^ax to Weyl
group invariant functions on H^ax Fl t is a bijection. For easier reference
we collect in Section 1 the main results of [Ne96a] that will be used in this
paper.

Section 2 contains a compendium of some results from the theory of
holomorphic representations that will be crucial in Section 4 to prove the
existence of sufficiently many biinvariant plurisubharmonic functions and
also of a strictly plurisubharmonic biinvariant function (which only exists
under some additional assumptions on the Lie algebra 0). In Section 3
we collect the explicit formulas for the low dimensional cases, mainly for
5[(2,R), 5u(2) and the oscillator algebra, that will be the bridge between
convexity and plurisubharmonicity on the one hand side and convexity and
geodesic convexity on the other hand.

As already mentioned above, the main result of Section 4 is that
plurisubharmonic biinvariant functions on Smax correspond to convex
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functions on IVmax- The method to obtain this result is to adopt the
strategy from [AL92] in the sense that instead of using finite dimensional
holomorphic representations of complex reductive groups, we use infinite
dimensional holomorphic representations of semigroups on Hilbert spaces
(cf. [Ne94a], [Ne95a,b]). We conclude this section by showing that a G-
invariant function (p on Exp(Dh) C GC/G is geodesically convex if and only
if the function (p o Exp on D^ is locally convex which in turn is equivalent
to the plurisubharmonicity of the corresponding biinvariant function on
D=GExp(Dh).

In Section 5 we prove among other results that the semigroup 5max is a
Stein manifold. The setup of this section needs some additional explanation.
Let Q be a finite dimensional Lie algebra and W C Q a generating invariant
cone. To this data we associate several semigroups as follows. First let G^
denote the simply connected complex Lie group whose Lie algebra is the
complexification 5^ °fS 8Ln^ Sw ''= {exp(Q-}-iW°)} the open subsemigroup
generated by the exponential image of the open cone Q + iW° C ̂ . Then
Sw is a complex manifold with holomorphic semigroup multiplication. We
write r(^, W°) for the universal covering manifold of Sw which sits as an
open subset in the universal covering space r(^, W) of Sw (cf. [HiNe93,
Ch. 3]). The semigroup multiplication lifts to a multiplication on T(Q^W)
which is holomorphic on r(^, W°) and so does the exponential function
exp: Q + iW —^ Sw lift to an exponential function Exp: Q + iW —> r(g, W)
with Exp(^ + iW°) C r(fl, W°). Moreover, the antiholomorphic involution
GC —> GC^Q ^ 9* ''= ^-1, where g \—> g denotes complex conjugation
on GC, lifts to a continuous involutive antiautomorphism r(0,TV) —>
r(fl, TV), s i—^ 5* which is antiholomorphic on r(fl, W°).

If DC r(fl, W) is a central subgroup, then r(g, W, D) :== F(s, W)/D
is called a (closed) complex OPshanskil semigroup and T(Q,W°,D) :==
r(s,W°)/Z) the corresponding open OPshanskil semigroup. Both inherit
a canonical semigroup structure with similar properties as in the simply
connected case. Note that we regain Sw as F (Q,W,7r-^(S)) if we identify
the fundamental group 7ri(5) of S with its canonical image in r(^, W) (cf.
[HiNe93, Cor. 3.18]). If W = Q, then the corresponding OPshanskil semi-
groups are precisely the connected complex Lie groups with Lie algebra 5^.

The main result of Section 5 (Theorem 5.18) is that every OPshanskil
semigroup of the form S = GExp(iW°), where W° is an open elliptic cone,
is Stein. We also include a result on holomorphic separability which can be
derived with representation theoretic methods.
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Since we know from Section 5 that in particular the semigroup 5'max
considered in Section 4 is Stein, it is natural to ask for the G-biinvariant
domains of holomorphy in Smax. In Section 6 we show that the biinvariant
domains of holomorphy D = GExp(D^) are precisely those for which the
domain D^ C zH^Lx ls coi^v^x. Moreover, we show in Section 7 that
for each connected biinvariant domain D = GExp(D^) the envelope of
holomorphy is schlicht over 5max and that it coincides with the domain
D = GExp(convD^). This means in particular that every holomorphic
function on D extends to the domain D C 6'max- We note that since we do
not assume that P is a convex subset of zt, even in the case where Q is a
compact Lie algebra our results are a generalization of those in [AL92].

1. Invariant convex sets and functions in Lie algebras.

In this section we collect the basic notions and the main results of
[Ne96a] which will be crucial throughout this paper.

In the remainder of this paper the notion "invariant" always refers to
the group Inn(g) of inner automorphisms of the Lie algebra Q. In this sense
the invariant subspaces are the ideals of Q. We note in particular that if
W C Q is a closed convex invariant cone, then its edge H(W) := Wr}(—W)
is an ideal of Q.

DEFINITION 1.1. — (a) Let Q be a finite dimensional real Lie algebra.
For a subalgebra a C Q we write Inn(a) := (e^0) C Aut(^) for the
corresponding group of inner automorphisms. A subalgebra a C Q is said
to be compactly embedded iflnn(a) has compact closure.

Let i C Q be a compactly embedded Cartan subalgebra and recall that
there exists a unique maximal compactly embedded subalgebra t containing
i (cf. [HHL89, A.2.40]).

(b) Associated to the Cartan subalgebra i^ in the complexification Q(^ is
a root decomposition as follows ([HiNe93, Ch. 7]). For a linear functional
a € t^ we set

fl£ :- {X € flc ^ (VV € tc)[r,X] = a{Y)X}

and write A := {a € t^ \ {0} : fig ^ {0}} for the set of roots. Then
Qc=iC^ (B fl^ ^W c iR for aJi a e A and g^ = fl^, where X ^ ~X

aGA
denotes complex conjugation on Q(^ with respect to Q.
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(c) A root a is said to be compact ifgg C ̂  and non-compact otherwise.
We write AA; for the set of compact and Ap for the set of non-compact
roots. If g = r x s is a ^-invariant Levi decomposition, then we set

A^ := {a e A: flg C re} and As := {a e A: gg C 5<c}

and recaJi that A = A^UAs is a disjoint decomposition (cf. [Ne98, Def.
5.2.4]). Note also that ifu is the largest nilpotent ideal, then u = [t, u] +3(5)
([HiNe93, Prop. 7.3]) and if i H t = 3(5) C ti, then [ := ti C 5 is a
complementary subalgebra satisfying Q = u xi L Moreover t = 3(5) e t(,
where t[ = ti C (t H 5) is a compactly embedded Cartan subalgebra of [.

If a € As, then we write a for the uniquely determined element in
the one-dimensional space [s^S^] ^ ic satisfying a(a) = 2.

(d) A positive system A'^ of roots is a subset of A for which there exists
a regular element XQ e ii with A+ = {a € A: a(Xo) > 0}. We say that a
positive system A+ is ^-adapted if the set A^ := Ap D A'^ of positive non-
compact roots is invariant under the Weyl group W^ := Mnn(^) (^/^innm (l)
acting- on t. We recan from [Ne94a, Prop. 2.7] that there exists a t-adapted
positive system if and only if^^)) = t Jn this case we say that Q
is quasihermitian. Note that a simple real Lie algebra is quasihermitian
if and only if it is either compact or hermitian. We say that Q has cone
potential if for each Z C flg \ {0} the bracket [Z,~Z] is non-zero.

IfA"^ is a t-adapted positive system of roots, then we conclude from
^ = 3(0) ® ^{ wi^2 ^[ := ^ Fl ^ as in (c) that

^(^^[(aW)-^
i.e., that I is aiso quasihermitian. Thus all its simple ideals are either
compact or hermitian.

(e) We associate to a positive system A~^ the convex cones

Cmin := cone{i[X^,Xa]:X^ € Q^a C A^-}

and G^ax := (^)* = {X G t: (Va € A^)za(X) ^ 0}.

(f) An element X e Q is called elliptic if the operator ad X on 5 is
semisimple with Spec(adX) C %R, i.e., if the subalgebra RX of Q is
compactly embedded.

(g) An invariant convex cone W C Q is called elliptic if W° is non-empty
and consists of elliptic elements of Q. D

The main result in Section 2 of [Ne96a] ([Ne96a, Th. 2.11]) is:
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THEOREM 1.2. — A Lie algebra Q contains an invariant elliptic cone
if and only if it contains a compactly embedded Cartan subalgebra i and
there exists a t-adapted positive system A4' with Cmin c Cmax- If tms
condition is satisfied, then the unqiuely determined invariant cone TVmax
with Wmax H t = Cmax is elliptic. If W C Q is an invariant elliptic cone,
then

TV°==Inn(0).(lV°nt)

and there exists a unique t-adapted positive system A4' such that W C
^max- It follows in particular that the cones IVmax are maximal elliptic, n

From now on A"1" denotes a ^-adapted positive system with Cmin c

Cmax and Wmax the corresponding maximal invariant elliptic cone. Note
that Theorem 1.2 states in particular that Wmax = ^(fl^C'max? Le^ lhat
each adjoint orbit Ox := Inn(fl).X in V^max intersects t.

We set Cmax,k := Inn(^).Cmax c ^ We recall the set Ay!" of positive
roots of solvable type and the set A^g of non-compact positive roots of
semisimple type. For a C A we set [a] := {a, -a} and ̂  := ^(fl^Sc^)-

We set p^ := (B flM and p^ := © fl^. Note that g = ^ C py, C p^
aeA^" a€A^5

is a ^-invariant decomposition and that I = (^ 0 I) (B Ps is a Cartan
decomposition of I such that ^H I contains the center 3(1) of I. The following
decomposition result (cf. [Ne96a, Lemma 3.3]) is essential to obtain the
reduction from IVmax to Cmax-

LEMMA 1.3. — The mapping

^ p, x p, x C^ -. W^ (X, V, Z) ̂  e^e^.Z

is a diffeomorphism. n

An important consequence of Lemma 1.3 is the following result.

THEOREM 1.4. — J f^C TV^ax is an OPen invariant subset and t4' C t
a fundamental domain for the action of We, then the restriction maps

^oo înn(0) _ c^^m)^ and c^)11111^ -^ c(nnt)^ -^ (^(nnt-^)

are bijections.

Proof. — [Ne96a, Cor. 3.4, Prop. 3.6]. n

DEFINITION 1.5. — Let V be a finite dimensional real vector space
and Q. CV be a subset.
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(a) A function </?: Q. —> R is said to be locally convex if each x C fl, has a
convex neighborhood on which (p is a convex function.

(b) If Q is open, then a function (p e C°°(fl,) is called stably locally
convex if all the bilinear forms d2^p(x): V x V —> M, x € ^, are positive
definite. If, in addition, fl, is convex, then a stably locally convex function
y? on fl, is called stably convex. Note that stable local convexity implies
local convexity because a two times differentiable function with positive
semidefinite second derivative is convex.

(c) Let C C V be a closed convex cone. We define a quasiorder ^c on V
by

x <^c y if y - x eC.
A function ip on a subset fl, C V is said to be (7-decreasing ifx ^c V implies
^{y) ̂  ̂ )-
(d) Let C C V a convex subset. We define the recession cone ofC by

lim(C') :={veV:C-^vCC}. D

To each X € int Cmax we associate the cone

Cx := cone{m(X)%[X^, XJ: a e A, X^ € flg} = Cnun + Cx,k

with Cx,k '-= cone{ia{X)i[Xa,Xa\:a C A^,Xa e flg}. We also recall that

t+ = [X C i: (Va € ^)ia(X) ̂  0}

is a fundamental domain for the action of the Weyl group W^ on t.

For the following theorem we recall that the Lie algebra Q is called
admissible if Q ® M contains pointed generating invariant cones (cf. [Ne98,
Ch. V] for other characterizations).

THEOREM 1.6. — Let fl, C W^x be an open invariant subset,
(p: n —^ R be an invariant (smooth) function, and ip := ^l^nf. Then the
following are equivalent:

(1) y? is {stably) locally convex.

(2) (p is (stably) locally convex and d(p(X)(Cx) c IK~ (5 is admissible
and d(p(X) € - int C^) for all X e ̂  H t.

For the implication (2) =^ (1) it suffices that Q has cone potential. Jf^Dt"^
is convex, then each locally convex function on fl, has a convex extension
to conv(f^).
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Jf^nt is convex, then in (2) the cones Cx can be replaced by the smaller
cone Cmm which does not depend on X.

Proof. — [Ne96a, Th. 3.19, Rem. 3.20, Th. 3.22, Rem. 3.23(b)]. n

The following proposition is the basic tool for showing that invariant
subsets of Wmax ^T^ convex.

PROPOSITION 1.7. — Let C C W^ax ^e an I1111 )̂ -invariant subset
and C := C H t. Then (2) => (1) holds for the following statements:

(1) C is convex.

(2) C is convex and Cmm + C C C.

If, in addition, C is closed, open, or Cmm is pointed, then also (1) =^ (2).

Proof. — [Ne96a, Prop. 3.14]. n

2. Holomorphic representations.

In this short section we collect the representation theoretic results
that we will need in Section 4 to deal with biinvariant plurisubharmonic
functions on domains in OPshanskiT semigroups. In this section Q is a
Lie algebra with compactly embedded Cartan subalgebra t and maximal
compactly embedded subalgebra ^. Moreover G denotes a connected Lie
group with Lie algebra Q and T and K the analytic subgroups corresponding
to t and ^.

DEFINITION 2.1. — Let A~^ C A denote a positive system.

(a) For a Q-module V and X e i^ we set V x := {v e V : (VX € tc)X.z> =
X(X)v}. This space is called the weight space of weight \ and X is called a
weight ofV ifVX ̂  {0}. We write Py for the set of weights ofV.

(b) Let V be a Q^-module and v € Vx a weight vector of weight A. We
say that v is a primitive element of V (with respect to A"^ if v ^ 0 and
Q^.V = {0} holds for all a e A+.

(c) A flc -module V is called a highest weight module with highest weight \
(with respect to A"^ if it is generated by a primitive element of weight X.

D

DEFINITION 2.2. — Let (TT, H) be a unitary representation of the group
G, i.e., TT: G —> U(T~l) is a continuous homomorphism into the unitary group
U(H) of the Hilbert space H.
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(a) We write 7i°° (H^) for the corresponding space of smooth (analytic)
vectors, i.e., for the set of all those elements v G H for which the mapping
G —> 7i, g ^—> 7r{g).v is smooth (real analytic). We write d7r for the derived
representation ofQ on H00 given by

d.W..=^ 7r(exptX).v
p=o

for X € Q and v € H°°. We extend this representation to a representation
of the complexified Lie algebra Q(^ on the complex vector space H°°.

(b) A vector v e 7i is said to be K-finite if it is contained in a K-invariant
finite dimensional subspace of H. We write H1^ for the set of K-finite
vectors in 1~i. Note that the space T^500 of K-finite smooth vectors is a
Qc-submodule ofH00 (cf. [Ne94a, p.121]).

(c) A unitary representation (TT, Ti) of the connected Lie group G with
L(G) = 0 is called a unitary highest weight representation if the Q<^ -module
7 ,̂00 of smooth K-finite vectors is a highest weight module, n

Let Q and t be as above and suppose that A^" is a ^-adapted positive
system. Let further Q = u ^ I be as in Definition 1.1 (c) and Cmax s =
(lA^g)*. Then there exists a unique generating invariant closed convex cone
Ws C [ with Ws n t[ == Cniax,5. Then Wmax,5 := u + Ws C 0 is a pointed
generating invariant closed convex cone. The corresponding OPshanskil
semigroup <Smax,s ''= H^^SLx^) nas tne property that G := (Exp(fl))
is the simply connected group with Lie algebra Q and that the mapping

G x w^s -^ r(s,iVmax,.), (g.x) ̂  ̂ Exp(zX)
is a homeomorphism and a diffeomorphism G x W^^ g —^ ^max^ ([HiNe93,
Cor. 7.35]).

In the following we will mainly be interested in certain OPshanskil
semigroups for which the corresponding cone W is contained in TVmax,s-
A particularly important subsemigroup is 5'max = GE~xp(W^^), where
^max c 0 is the unique generating invariant cone with TVmax H t = Cmax
(cf. Theorem 1.2). Note that u C H^iax so that Wmax = u+^rnaxHl), and
since IVmax contains all the simple compact ideals of 5, the cone Wmax H ^
need not be pointed.

DEFINITION 2.3. — Let B(H) denote the C*-algebra of bounded
operators on the Hilbert space "H and S an open OFshanskii semigroup. A
holomorphic representation (TT, Ti) of S on T-t is a holomorphic semigroup
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homomorphism TT: S -> B(^) with 7r(5*) = 7r(s)* for aJI s e S. If
S = r(Q^W°^D), then one can think of holomorphic representations of
S as analytic extensions of the corresponding unitary representation TT of
the group G := (Expfl) C r(^,W,Z)) which is uniquely determined by
7r(g) o 7r(s) = 7r(ps) for g € G and s € S (cf. [Ne98, Cor. 2.4.23]). D

In the next section we will need the following result. We recall that
a functional A € zt* is said to be dominant integral with respect to A^ if
A(d) € No holds for all a € A^.

THEOREM 2.4. — Let A € iC be dominant integral and p =
i ^ (dime 0^) a such that A + p € imiC^. Then the following as-

QGA+
sertions hold:

(i) There exists a unitary highest weight representation ('JT\^'H\) ofG
with highest weight A.

(ii) TT\ extends to a holomorphic representation TT\ of S max on H\.

(111) 7r^(5niax) consists of trace class operators, the corresponding char-
acter

©A^max —> C,S^ tTTT^s)

is a holomorphic function, and for s = ExpX, X € iC^^, we have

e^^——™n.^ti-'—™)-'-6'
where 0^:K^ —> C is the holomorphic character of the irreducible
holomorphic representation ofK<^ with highest weight A.

(iv) For s = ExpX, X € iC^, we have log ||7r(5)|| = sup(A, W^.X).

Proof. — (i) [Ne96b, Th. 3.9].

(ii) [Ne95b, Th. 3.7].

(hi) The first assertion is [Ne96b, Th. 4.3], the holomorphy of the character
is proved in [Ne94a, Cor. 4.7], and the explicit formula for the character on
Exp(zC^ax) follows from the discussion following Theorem 4.5 in [Ne94c].

(iv) This is an easy consequence of [Ne96b, Prop. 4.2]. D
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3. Calculations in low dimensional cases.

In this section we collect the calculations in low dimensional Lie alge-
bras that will be needed to obtain the characterizations of the biinvariant
(strictly) plurisubharmonic functions and the invariant geodesically convex
functions in Section 4. The most relevant cases are 9 = s[(2,R) = su(l, 1),
su(2), and where Q is the four dimensional oscillator algebra.

3.1. The solvable type.

In this subsection Q denotes a solvable Lie algebra with compactly
embedded Cartan subalgebra t. We assume that A"^ = {a}, so that
there exist only two root spaces in flc. Then Q == u xi I, where [ C t
complements the center 3(5) and u == 3(5) +fi^ is the nilradical. Note that
^ = fl£ + flc0 + ̂ c) so that [uc,uc] c teg^c"] c ^c)- We extend
the root a to a functional on Q^ that vanishes on u<c. If dimc0^ = 1,
[fl^flr0! ^ W anc^ ^lm^ = ^"> ^en 5 ls ^^d the ^our dimensional
oscillator algebra. It has a basis (P, Q, Z, H) where the non-zero brackets
are given by

[P, Q] = Z, [JT, P] = Q, and [̂ , Q] = -P.

Let GC denote the simply connected group with Lie algebra flc an(^ G' c ^C
the simply connected subgroup with Lie algebra 0. Then GC == Gexp(^),
where the map

GxiQ-^Gc, {g,X) ̂  gexp{X)

is a diffeomorphism (cf. Lawson's Theorem in [HiNe93, Ch. 7]). For s =
gexp(X), X 6 i0, we have

5* = exp(X)^-1 = ̂ -1 exp (Ad(p).X),

so that s* = s entails g2 = 1, hence ^ = 1 since G is simply connected and
solvable. For 5 = 5 * = expX we define logs := X.

PROPOSITION 3.1. — Let s = exp(Za + Z-a)exp(Z) with Z € I,
a(Z) / 0, Z±o; € 0^°', and suppose that s* = s. Then there exists ag eG
such that

gsg-1 = exp (z + J coth (a(^))[Z„^_J).
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Proof. — We write s = s^si according to the semidirect decompo-
sition GC = Uc x I/c. Then s* = 5^ € l/c^* implies ^ = s"[ and
5^ = s'|~lShSl. We conclude in particular that a{Z) G M. We use [u, u] C ^(g)

and exp(A)exp(B) = exp(A 4- B + .[A,B]) for A,B € UG to obtain for
x e fl^

expXsexp(-X)

= expX exp(Z^ + -^-a) exp(-X) • exp(X) exp(Z) exp(-X)
= exp (e^^Z^ + Z_^)) exp(X) exp(-eadz.X) exp(Z)

= exp(Z<, + Z-^ + [X, Z^ + Z_^]) exp(X - eadz.X - ̂ [X, eadz.X]) exp(Z)

= exp((7) exp(Z)

with

C = Z^ + Z_^ + [X, Z^ + Z_^] + X - eadz.X - ̂ [X, eadz.X]
+^[^^+Z-^,X-eadz .X].

Then

C e Za + ̂ -a + X - e^.X + 3(sc)

so that the requirement C G ^3(0) for X = Xa + Xc, leads to Z^ + Z-a =
-X+eB^.X^.e,

Z^ = (̂̂  - 1)X^ and Z-c, = (e-a(z) - l)X^.

Now

C = [X, Z, + Z-,] - j[X, -X + eadz.X] + |[Za + Z-^ -Z^ - Z-J

= [X, Z, + Z_,] - j[X, Z, + Z-,]

= |[X, Z, + Z_J = JKe^) - 1)- ,̂ + (e-^) - l)-1^, Z, + Z-,]

-If——3——---1———^ 7 1- 2 Ve^) - 1 e-0^) - 1^^-^
I / e-^ e^ x- ( e___\\7 7 1
9 I a(Z) a(Z) a(Z) a(Z) ^ 1^0!? ^—QiJ

= Q'^ZZ')—————^zT^^-a] = -COth ( ——— ) [Z^,Z_c,].
Zg-2-_g--^- 1 \ Z /

D
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COROLLARY 3.2. — Let X (E ii with a(X) ^ 0. Then the following
assertions hold:

(i) Ifs= exp(Xa — Xo) exp(X) exp(X^ — X^), then there exists g € G
with

gsg-1 = exp (x - 2coth (aw)[X^^}\ .
\ z /

(ii) If5= exp(^Xc,)exp(X), 2; e C, then there exist g\,g^ C G with

/ |^|2 __\
g^ = exp ̂ X - ̂ ^_^[X^X^}j .

Proof. — (i) In view of

[X, -^,e°WX, - e-^^.X;] = (e"W - e-"^))^,^],

we have

s = exp(^ - X^) exp(eaW^ - e-^^Q exp(X)

= exp ((1 + e^^Xa - (1 + e-^)^ + sinh (a(X)) [X^, XJ) exp(X).

Therefore, in the notation of Proposition 3.1, we have

^ = (1 + e^X,, Z_, = -(1 + e—W)^

and Z = X + sinh (a(X))[X^,XcJ. Hence, according to Proposition 3.1,
there exists a 5? € G with

log(^-1) = X + sinh (a(X))[X^,Xj

-jcoth(a^ ))(l+ea(x))(l+e-aW)[X„X;]

= X + sinh (a(X))[^,Xj - coth (aw) (l + cosha(X)) [X<,,^].

Now we calculate

, , t., . 2( sinh1)2 coshA - (cosh A)2(coshl)2

sinh t - (coth -) (1 + cosh t) = -v———2-————^—\——^—v———2-—
2i sinh ^

2 cosh A t
=——-——==-2coth-

sinh j 2

and obtain

log(^-1) = X - 2coth (^^^ [X,,XJ.
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(ii) In view of [zX^zX^} = H2^, Xo], we may w.l.o.g. assume that
z = 1. Since, according to a(X) -^ 0, s is contained in S^ax or S^x? the

existence of^i and g^ follows from Smax c Gexp{ii)G. Let ^1^2 = exp(A)
with A e it. Then exp(2A) = {g\sg^Yg\sg^ = g^s^sg^ and therefore
s*s = g2 exp(2A)^1. So Proposition 3.1 applies to s * s . In view of

5*5 = exp(X) exp(-~Ka) exp{Xa) exp(X)
= exp(X) exp(X, - X^ + j [X^ XJ) exp(X)
= exp(ea(x)X, - e-'WX:) exp(2X + j[X,,X,]),

we have

Z = 2X + |[X,,X;], Z<, = e"^^,, and Z-, = -e-a(x)^.

Therefore Proposition 3.1 implies that

A=X+I[X„X:]+^coth(a^))[Z„Z_J

= X + I[X,,X^] - ̂  coth (a(X))[X,,X^]

1 - coth (a(X)) ^ —— _ 1 _
=x+——————4——————[^a,^a] =X-^^^——Y.[XQ,,XJ,

because

sinht—cosh^ e"* 21 — coth^ = ———————— = ———— = —————. D
smht sinht e21 — 1

3.2. The non-compact reductive case.

In this subsection Q denotes a reductive Lie algebra with compactly
embedded Cartan subalgebra t and the property that the commutator
algebra is isomorphic to sl(2,R) ̂  su(l, 1). Then there exist only two root
spaces in Q^ and A+ = {a}. We normalize X^ e ̂  by the requirement that
[X^~Xa\ = d. Let GC ^ Z(Gc)o x S1(2,C) denote the simply connected
group with Lie algebra ̂  G ^ Z{G)o x SU(1,1) C GC the analytic
subgroup with Lie algebra 0, and 5'max c GC tne maximal OPshanskiT
semigroup associated to A4".

PROPOSITION 3.3. — Let X € ii with a(X) > 0. Then the following
assertions hold:

(i) If s = exp (t(X^ - XO) exp(Z) exp (t(X^ - XJ) with t C R and
t is sufficiently small, then there exists g e G with gsg~1 = exp(X +
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/(t)[X,,X,]), where

f(t) = arcosh (cos(2t) cosh(^a(X))\ - a(^

(ii) Ifs= exp(zXa) exp(X) with z G C and z is sufficiently small, then
there exist gi^g-2 e G with g\sg^ = exp (X + /(l^p^Xc^XcJ), where

f(r) = 1 arcosh (cosh (a(X)) - ̂ e-^^) - ̂ -R and /'(O) < 0.
Zi \ Zi / Zi

Proof. — Since GC ^ Z(Gc)o x S1(2,C), it suffices to prove the
assertions in the case where Q = 5>u(l, 1) ^ 5l(2,R). We choose the basis

-(o-°.). -(;;). - ^(-°.o)-
Then t = ISiH is a compactly embedded Cartan subalgebra, and with the
appropriate choice of a positive root,

^^-^(S ;)• —^''G S)
and a = [X^XJ = -iH = ( ~ ° ). Moreover X = ^a with ^ := ̂ °

(e^ 0 \
and therefore exp(X) = -^ ] 'U e /

(i) Since Xa - Xa = -iQ = ( _ ) , we have

s == exp (t{X^ - X^)) exp(X) exp [t{Xa - X,))
_ f cost smt\ ( e^ 0 \ / cos^ sin^\

\ — s i n ^ cost/ \ 0 e~^ ) \—s in t cost j

_ ( e^cost e~^smt\ ( cost sint\
^—e^sint e~^costj \—smt cost]

__ ( e^ cos21 - e~^ sin21 cosh(^) sin(2t) \
- ^ - cosh(^) sin(2t) e~^ cos21 - e^ sin21 ) '

Thus trs = (cos2^ - sin2t)(e/A + e-^) = 2cos(2t)cosh(/^). If g €
( e^' 0 \G? = SU(1,1) is chosen such that gsg~1 = ( _ / ) is diagonal, then\ U e /

tr(5) = ti(gsg~1) = 2cosh(//) and so

^L' = arcosh (cos(2t) cosh(/^)) = arcosh (cos(2t) cosh(^a(X))).
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Then we only have to solve the equation a{X) + 2f(t) = 2//, and (i)
follows.

(ii) Since the semigroup 5max c Sl(2, C) is open, we find for sufficiently
small z elements ^1,^2 ^ G with g\sg^ == exp(X + f(z)[Xa,~Xa}) for a
certain number f{z) € R. Let 2// := a(X) + 2/(^). Then

_ ( 1 z\ ( e ^ 0 \ /e^ ze-^\
" Y O i y Y O e -^ ' ^O e-^ )

and therefore

* = ( etl 0 \ /e^ ze-^\
s s ~ \ -ze-^ e-^ ) \ 0 e-^ y

_ (e^ z \ _ _i /e2^ 0 \
-^-z 6-^(1 -\z\2))-92 [ o e-2^)92

for an element g^ e G = SU(1,1). So

2cosh(2/,') === tr(5*5) = e2^ + e-^(l - |^|2) == 2cosh(2/^) - e-^\z\2.

Solving this equation we find // = j arcosh (cosh(2/^) — ^e"2^!^!2)). Now
the first assertion follows from solving the equation defining p!\

To see that /'(O) < 0, in view of the chain rule, it suffices to check
that

arcosh' (cosh (a(X))^ > 0

which in turn follows from cosh' (a(X)) = sinh (a(X)) > 0 because
a(X) > 0. D

3.3. The compact case.

In this subsection Q denotes a compact Lie algebra with Cartan
subalgebra t and the property that the commutator algebra is isomorphic
to su(2). Then there exist only two root spaces in g^ and A4' = {a}.
We normalize Xa € ^ by the requirement that [Xa.Xa] = a. Let
GC ^ Z(Gc)o x S1(2,C) denote the simply connected group with Lie
algebra g<c and G ^ Z(G)o x SU(2) C GC the analytic subgroup with
Lie algebra Q.

PROPOSITION 3.4. — Let X C ii with a(X) ̂  0. Then the following
assertions hold:
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(i) Jf s = exp (t{Xa - XJ) exp(X) exp (t{X^ - ~Xa)) with t e R,
then, for t sufficiently small, there exists g € G with gsg~1 = exp(X +
/(t)[X,,Xj), where

f(t) = - arcosh (cosh(2t) cosh(^a(X))) + ^-R.

(ii) If s = exp(zXa) exp(X) with z € C and z is sufficiently small, then
there exist g\, g^ G G with

g^ = exp (X + /(H2)^,^]),

where

/(r) = -1 arcosh (cosh (a(X)) + ̂ e-0^^ + a^ and /(O) < 0.
^ \ Zi / Zt

Proof. — Since GC ^ Z(G<c)o x S1(2,C), it suffices to prove the
assertion in the case where 0 == 5u(2). We choose the basis (H^iP^iQ) (cf.
proof of Proposition 3.3). Here t = RH is a compactly embedded Cartan
subalgebra, and with the appropriate choice of a positive root,

^'^-^(s;) "d ̂ (- '̂(-'i;)
so that [Xa.Xa] = -iH = a. Moreover X == p,a with fi := "̂  ^ 0 and

(e^ 0 \
therefore exp(X) == -^ ) •U e /

(i) Since A^ - ~Xa = P = ( ) , we have

s = exp (t(Xc, - ~Xa)) exp X exp (^(X^ - XJ)
_ / cosh t sinh t \ ( e^ 0 \ / cosh ^ sinh t \

\smht cosht ) \ 0 e"^/ \smh^ cosht j

_ /e^cosh^ e'^sinh^ /cosht sinht\
^e^sinht e~^ cosh t / \ sinh t cosht )

_ ( e^ cosh21 + e-^ sinh21 cosh(^) sinh(2t) \
- ^ cosh(^) sinh(2t) e~^ cosh2 i + e^ sinh2 t / '

Thus trs = (cosh2 i + sinh2 t){e^ + e-^) = 2cosh(2t)cosh(^). If g €

G = SU(2) is chosen such that gsg~1 = ( _^/ ) is diagonal, then
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tr{s) = tr(gsg~1) = 2cosh(//). Hence

// = arcosh (cosh(2^) cosh(/^)) = arcosh (cosh(2^) cosh(^Q:(X))).

Then we only have to solve the equation a(X)—2f(t) = 2// and (i) follows.

(ii) Since_5niax = S1(2,C), we find g^,g^ C G with g^sg^ = exp(X +
f{z)[Xa,Xa\) for a certain number f(z) e R. Let 2// := a(X) - 2/(^).
Then

^ /<! ^ /^ 0 ^ /e^ ^e-^'
5 - ^ 0 1 ) [ 0 e-^ 7 [ 0 e-^

and therefore

s s =

^ z \ _ _ i / e 2 ^ 0 \
^ g-2^^]2^ - ^ 2 ^ 0 e-2^^2

for an element g^ e G = SU(2). So

2cosh(2^) = tr(5*5) = e2^ + e-^(l + |^|2) = 2cosh(2/^) + e-^\z\2.

Solving this equation we find // = j arcosh (cosr^/^+je'"2^!2). Now the
first assertion follows from solving the equation defining //. That /'(O) < 0
follows by the same argument as in the proof of Proposition 3.3. D

4. Biinvariant plurisubharmonic functions.

We want to characterize the G-biinvariant plurisubharmonic functions
on 6max or rather on open G-biinvariant subdomains D = GExp(D^)
of this semigroup. Then D^ C zTYmax is a G-invariant domain and the
result will be that biinvariant plurisubharmonic functions on D correspond
to locally convex invariant functions on the domain D^' We will also
obtain a strict version of this result showing that strictly plurisubharmonic
functions correspond to stably convex functions. It is remarkable that the
latter statement is far from being a direct consequence of the first one.
The major difficulty is caused by the non-compactness of the G-orbits
in W^^. The proof of this characterization is divided into several parts.
First we show that if (p is a biinvariant plurisubharmonic function on D,
then the corresponding function ^ on D^ is locally convex. So far the
arguments are purely geometric. To obtain the converse, we need some
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representation theoretic arguments supplying us with sufficiently many
biinvariant plurisubharmonic functions. The proof for the strict version of
the correspondence has the same structure. The first implication is purely
geometric and for the converse we need some strictly plurisubharmonic
biinvariant function on Smax- Such a function need not always exist, but
it does if and only if Q is admissible, or if and only if T^ax permits stably
convex invariant functions. Our construction of a strictly plurisubharmonic
biinvariant function uses an injective holomorphic representation TT: 5'max —^
B^(H), where B^(H) is the space of Hilbert-Schmidt operators on a Hilbert
space 7~t.

DEFINITION 4.1. — (a) Let V be a complex vector space and J: V —» V
the associated complex structure. A skew symmetric real bilinear form
uj: V x V —» R is said to be

(1) positive if uj(v^ J.v) ^ 0 for all v G V.

(2) strictly positive ifuj{v, J.v) > 0 for 0 7^ v e V.

(3) a (l,l)-form ifuj(J.v^J.w) = c^(v,w) for v^w € V. Note that uj is
a (l,l)-form if and only if h(v,w) := uj(v,J.w) defines a real symmetric
bilinear form on V.

(b) If M is a complex manifold, then a 2-form uj on M is called positive,
strictly positive, or a (1, l)-form, if for each x E M the form uj[x) on Tx(M)
has this property. D

DEFINITION 4.2. — (a) Let fl, C C be open. A function ip:fl. —>
R U {—00} is called subharmonic if

(i) (p is upper semicontinuous, i.e., for each t e R the set {z € fl,: (p(z) <
t} is open.

(ii) For each open relatively compact disc D C fl and each continuous
function f on D which is harmonic in D, and which satisfies (p \QD ^ / \OD,
we have (p \D ^ /.

A function f e C2^) is called strictly subharmonic if A/ is a positive
function.

(b) Let M be a complex manifold. An upper semicontinuous function
^p:M —> R U {—00} is called plurisubharmonic if for each holomorphic
mapping 7: ̂  —^ M, where 0 C C is a domain, the composition (p o 7 is
subharmonic. We write Psh(M) for the cone of plurisubharmonic functions
on M. Note that this definition implies that if h:X —> M is holomorphic
and (p is plurisubharmonic on M, then ( p o h is plurisubharmonic on X. A
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function ip € C^M) is said to be strictly plurisubharmonic if the (1,1)-
form uj = dJd(p on M is strictly positive. D

Example 4.3. — (a) Let M be a complex manifold and J the
associated complex structure. Then J acts on a € T^{M)* by J.a(v) :=
o;(J-1.^) = -a(J.v). Then for each / € C7°°(M) the 2-form dJdf = 2z<9<9/
is a (1, l)-form. Locally this 2-form is given by

Q2t

dJdf = 2i V^ -—^—dzj A dzjcL^ Qzjffzk
3^ J

and for hf(v^ w) := dJdf(v, iw) we have hf = 2 ̂  afg^ (dzj^dzk-^-dzk 0
3^ 3

dzj). If M is an open subset of C we obtain with -^-^ = ̂ A and

d z ^ d z + d z ^ d z = 2(dx 0 da; + dy (g) d?/)

the formula /iy = A/ • {dx ̂ dx-\-dy® dy). This shows that the definitions
of strictly plurisubharmonic functions and strictly subharmonic functions
are consistent.

(b) If 7^ is a Hilbert space, then the function defined by F(z) = -\\z\\2 is
strictly plurisubharmonic. In fact, we have dF(z){v) == Re(^,^),

(JdF)(z)(v) = Re(z^ —iv) = Rei(z^v) = —lm(z,v} = Im(z?,^),

and therefore (dJdF)(z)(v^w) = Im(w,z?) — lm(v^w) = 2Im(w,v) =
—2Im(z?,w). It follows in particular for uj = dJdF that uj{v^iv) =
-21m{v,iv) = 21mi(v,v) = 2\\v\\2 ̂  0.

(c) Let F(z) := log H ^ l l . We claim that F is plurisubharmonic on H. In
fact, it is upper semicontinuous. Let {ej)j^j be an orthonormal basis in H.
Then F is the supremum of the functions defined by

F,(^)= l log(^|^e,}|2) ,
\jei j

where J C J is finite. That these functions are plurisubharmonic follows
from [H673, Cor. 1.6.8] and the fact that the functions z ^—> | log |(z, ej)\2 =
log|(z,ej)| are plurisubharmonic because z i—» (z^ej) is holomorphic
([H673, Cor. 1.6.6]). Therefore F is plurisubharmonic by [Ho73, Th. 1.6.2].

D
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Remark 4.4. — With respect to the decomposition 5max = Gexp
(zlV^ax)? tne G-double cosets in 5'max can be written as G(expX)G =
Gexp(0x)^ where X € ^G^ax is determined up to H^-conjugacy because

Ox H ii = Ad(G).X H ii = W^.X

(cf. [HNP94, Prop. 5.7]).

Hence the G-biinvariant subsets D C 5'max are in one-to-one cor-
respondence with the H^-invariant subsets T> C zG^x vla ^ ^ D =
Gexp(P)G. Moreover, the G-biinvariant functions on D are in one-to-one
correspondence with the H^-invariant functions on T>. We recall from The-
orem 1.4 that if D is open, then this correspondence preserves continuity
and smoothness of functions. D

To each X € % int Gmax we associate the cone

Cx := cone{a(X)[X^Xj:a e A,X<, € gg} = zGmin + G^

with Cx•lk := - cone{a(X)d: a G AA;}.

PROPOSITION 4.5. — Let D C 5max be a G-biinvariant domain,
(p C Psh^)^0, and (p:= (p o Exp on V := zGmax n Exp'^D). Then
ip is a locally convex function with ̂ (X^G^) C R~ for all X e P.

Proof. — Since the mapping Exp: t + P —» D is holomorphic, the
function ip is a t-invariant plurisubharmonic function on the tube domain
t+ P, hence it is locally convex (cf. [AL92, p.369]).

Let XQ e P, a e A with a(Xo) > 0 and 0 7^ X^ € gg. We have to
show that

^(Xo)([X,,Xj)^0.

Note that d^p{Xo) makes sense as a sublinear functional on t because (p is
a convex function. The assertion will follow by showing that the functions
t ^—>- <^(XQ + t[Xo^Xa]) are decreasing.

We consider the subalgebra Q^ := t 4- span{X^ + Xa,i(Xa — Xo,)}
and note that it is one of the three types considered in Section 3. For
a([Xa^Xo\) > 0 it is of the non-compact reductive type, for a([Xa^Xa\) <
0 it is compact and otherwise it is solvable (cf. [HiNe93, Th. 7.4]).
Putting W\ := Wmax H 0i? we now obtain a holomorphic morphism
5i := GI Exp(iW^) —> 5max which is induced by the injection Q^ -^ Q.
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Let 7(2^) = exp(zXa)exp(Xo). Then it follows from Corollary 3.2(ii),
and Propositions 3.3(ii), 3.4(ii) that for sufficiently small z € C there exist
9i,92 ^ GI with

m(^2 = exp (Xo + /(M2)^,^]),

and the function r >—>• /(r) is strictly decreasing for small values of r. This
means in particular that

W)) - ̂ 17(^2) = y^o + /(M2)^,^]).
Now the plurisubharmonicity of (p and the holomorphy of 7 imply that ^07
is a subharmonic function, and therefore, for sufficiently small r, we obtain

^(Xo) = ̂ (7^)) ^ [1 Mre2^)) dt = ̂ (r)) = ̂ (Xo+Ar2)^,^]).
*/o

Now the fact that / is strictly decreasing for small values of r implies
that the function t i—^ ^{XQ + t[Xa^Xa\) is decreasing for small positive
values of t. n

So far we have a necessary condition for functions on domains V C ii
to be restrictions of G-biinvariant plurisubharmonic functions on a G-
biinvariant domain D C 5'max- According to Theorem 1.6, this is the same
condition which characterizes the locally convex G-mvariant functions on
the domain D^ = Ad(G).P C iW^.

Next we show that the conditions described in Proposition 4.5 are also
sufficient for a Weyl group invariant function on V to be the restriction of a
plurisubharmonic G-biinvariant function on D. From that and Theorem 1.6
it will then follow that a G-biinvariant function (p on D is plurisubharmonic
if and only if the function y? o Exp \D^ is locally convex.

4.1. Constructing plurisubharmonic functions.

Let X be a set. Then a function K: X x X —> C is called positive
definite if there exists a Hilbert space HK c ̂ x containing the functions
KX'. y i—^ K(x, y), x e X, such that f(x) = (/, Kx) holds for all x G X and
/ e HK- If S is a semigroup endowed with an involutive antiautomorphism
s i—^ s*, then a function (p: S —•> C is called positive definite if the associated
kernel K(s^t) := y{st*) is positive definite. If M is a complex manifold,
then we write M for the same manifold endowed with the opposite complex
structure.



COMPLEX AND CONVEX GEOMETRY OF OL'SHANSKII SEMIGROUPS 171

PROPOSITION 4.6. — Let M be a complex manifold and K:M xM —>
C a non-zero holomorphic positive definite kernel. Then the function
jC:M—>-RU{—oo}, z !—>• \ogK(z^ z) is plurisubharmonic.

Proof. — Let "HK ^ Hol(M) denote the Hilbert space associated to
the kernel K. Then we have a map rf:M —> 7^, given by f](z)(f) = f{z) =
{f^Kz). For each / C I~LK the function z »—» {f^Kz) is holomorphic. Hence
77 is weakly holomorphic. Since, in view of ||^(^)||2 = ( K z ^ K z ) = K{z,z)^
it is also locally bounded, we see that rj is holomorphic (cf. [HiNe93,
Lemma 9.7(i)]). Therefore \ogK(z,z) = 21og ||?7(z)|| is plurisubharmonic
by Example 4.3(c). n

In the following we write B\(7i) for the space of all trace class
operators on the Hilbert space H.

COROLLARY 4.7. — Let S be an open OPshanskii semigroup. Then
the following assertions hold:

(i) If (p is a non-zero holomorphic positive definite function on S, then
the mapping S —> R, s ^—> log(/?(ss*) is plurisubharmonic.

(ii) If (TT, H) is a holomorphic representations of S such that 7r(S) C
j8i(7Y), then the function

Q^:s »—> tr (7r(5))

is holomorphic, and F(s) = log 0^(ss*) = log ||7r(s)||^^ is plurisubhar-
monic and G-biinvariant.

Proof. — (i) Let K(s^t) := ^p{st*) denote the positive definite
kernel corresponding to (p. Then the plurisubharmonicity of the function
s ̂  \og(p(ss*) follows from Proposition 4.6.

Suppose that <^(ss*) = 0 for an s € 5. Then ||jC,||2 = K(s,s) = 0
implies that Kg == 0. Therefore ^p(Ss^) = {0} and since Ss* is an
open subset of S (cf. [HiNe93, Th. 3.20]), the holomorphy of (^ yields a
contradiction to ^p -^ 0.

(ii) The G-biinvariance of F is clear. To see that it is also plurisubharmonic,
note that the left multiplication representation of S on B^(T~i} given by
s. A := 7r(s)A is a holomorphic representation and that 9^ is an associated
positive definite function (cf. [Ne94a, Cor. 4.7]). Now the assertion follows
from (i). D
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LEMMA 4.8. — Let A be a (7* -algebra, A^ C A the subspace of
hermitian elements, and U{A) := {a G A:aa* = a* a = 1} the group of
unitary elements. Then the following assertions hold:

(i) The function y?: A —^ M, a i-̂  log ||a|| is plurisubharmonic and U(A)-
biinvariant.

(ii) The function y?:A/i —> R,X ^ logHe^H is convex and ^(A)-
invariant with respect to the conjugation action.

Proof. — (i) The biinvariance with respect to U(A) is clear. In view of
Proposition 4.6, for every state /: A —> C, i.e., for every positive functional
/ with 11/H = 1, the function (pf. a i-» log/(aa*) is plurisubharmonic. Since
2(p(a) = log ||aa*|| = sup^ y?/(a), and y? is upper semicontinuous on A, the
assertion follows from [H573, Th. 1.6.2].

(ii) The (7(A)-invariance of (p follows from ^e^01 || = [[ae^"1!! =
lle^H for X e AH and a € U(A). We assume that A ^ {0}. To see that ^
is convex, we note that

log He^l = supSpec(X) = sup{/(X): / e A'̂ , ||/|| = 1, / ^ 0}.

Now the convexity of (p follows from the linearity of the functions / € A^.
D

PROPOSITION 4.9. — Let S be an open OPshanskil semigroup and
(7r,7Y) a holomorphic representation. Then the function s ̂  log||7r(5)|| is
plurisu bharmonic.

Proof. — Since the mapping TT: S —> B(7-i) is holomorphic, the
assertion follows from Lemma 4.8(i). D

Let D C 5max be a G-biinvariant domain, D^, := Exp~1 {D) niW^^,
and P := Dh Fl ii. Then T> C it is a We-invariant open subset. For a W^-
invariant function / on P we write / for the corresponding G-biinvariant
function on D defined by

7(^iExp(X)^) = 7(^^Exp(Ad(^-l).X)) := /(X).

In view of Theorem 1.4, the function / is continuous and smooth whenever
/ is so. We write f^ for the function defined by f^(X) = max{/(7.X):7 €
We}.

THEOREM 4.10. — Let D C 5'max be a G-biinvariant domain. Then
the following assertions hold:
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(i) A G-biinvariant function (p: D —> R is plurisubharmonic if and only
if the function ip := f> o Exp: D^ —> R is locally convex.

(ii) If, in addition, T> D ii^ is convex, then each biinvariant plurisubhar-
monic function (p on D extends to a biinvariant plurisubharmonic function
on the domain GExp(conv-D/i).

Proof. — (i) Let !p be a biinvariant plurisubharmonic function on D.
According to Proposition 4.5, we know that the restriction of <p to T> is
locally convex and satisfies d(p{X){CX) C R~ for all X € P. Hence (p is
locally convex by Theorem 1.6.

Suppose, conversely, that (p is locally convex. Since plurisubharmonic-
ity is a local property, we may w.l.o.g. assume that PDzt4" is a convex set.
Then we use Theorem 1.6 to extend ^ to a convex invariant function ^ on
the convex invariant set conv(D^) C iW^^. In the same way we obtain a
biinvariant extension of ^ to a biinvariant function ̂  on the biinvariant do-
main GExp(conv^) C Smax by setting ^{gExpX) := ̂ (X). After these
modifications, we may w.l.o.g. assume that the set Dh is convex and that
(p is a convex function on this set.

Let C := zCniin- Then the convexity of (p implies that the restriction
of (p to T> is convex, W^-invariant, and (7-decreasing (cf. Theorem 1.6).
We have to show that for each such function / on P, the function / is
plurisubharmonic.

Let / be a convex We-invariant C-decreasing function on P. To
show that / is plurisubharmonic, we first note that, according to [Ne96a,
Lemma 1.12], we have / = sup^j/j, where the functions fj are affine
and (7-decreasing. Since / is >U-invariant, we even have / = supn.

jeJ
^^ ^4 ""tiThen f = supn. Hence it suffices to show that the functions n are

jeJ 3

plurisubharmonic ([Ho73, Th. 1.6.2]). Thus we may w.l.o.g. assume that
f = h^, where h is affine and (7-decreasing. Since constant functions
are trivially plurisubharmonic, we may even assume that h is linear, i.e.,
h € -C- = -(iC^r = zC^.

To understand the geometry of the situation, we recall the positive
system A^~ of compact roots. Then the cone

Ci := {g e -C^. (Va C A+)^(d) ^ 0}

of dominant functionals in —C* is a closed convex cone which is a fun-
damental domain for the action of the Weyl group W^ on —<7*. Since
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h^ = (7.^)(l for all 7 C >Vg, we may w.l.o.g. assume that h is domi-
nant. On the other hand (Aj^)* is a fundamental domain for the In-
action on ii and hence (A-^)* C (A^")* == zCmax is a fundamental do-
main for the action of W^ on zCmax- If X is contained in this cone, then
Wk'X CX - cone({a: a C A^}) (cf. [Ne94d, Cor. 2.3]) so that

h\X) = moxh^.X) == /i(X).

This means that h^ is the unique function on iCmax which is H^-invariant
and restricts to h on (A"^)*.

Let

£:={heC^ ePsh(P)}.

By the observations made above, the mapping h t-> h^ is linear on the
domain specified above. Hence the fact that Psh(D) is a convex cone implies
that £ is a convex cone. We show that this cone is closed. In fact, if hn e £
is a sequence converging to /i, then Lemma 1.3 shows that on each compact
subset of -Sniax, the functions h^ converge uniformly to the function h^ and
hence h^ is plurisubharmonic as follows easily from [Ho73, Th. 1.6.3].

Now let A e zt* be dominant integral such that A + p e zintC^.
Then Theorem 2.4 implies that there exists a holomorphic representation
(TTA, H\) of Smax such that for X € zCmax we have

log ||7r(ExpX)|| = sup(X^X) = \\X).

Since the function s i—^ log ||7r(5)[| is plurisubharmonic by Proposition 4.9,
we conclude that A e £. Next Lemmas 5.9 and 5.12 in [Ne96b] show that
R^£ is dense in Ci. On the other hand, £ is a closed convex cone and thus
f = G i . D

4.2. Strictly plurisubharmonic functions.

In the preceding subsection we have seen that biinvariant plurisub-
harmonic functions correspond to invariant locally convex functions on
H^ax. In this section we will show that this correspondence relates strictly
plurisubharmonic functions to stably locally convex functions.

LEMMA 4.11. — Let r > 0 and f: {z C C: \z\ < r} —> R be a strictly
subharmonic function of the form f(z) = g(\z\2) with g € ^([O, \/r\). Then
(A/)(0)=4^(0)>0.
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Proof. — For the Laplace operator in polar coordinates we have
A = ̂ +^+^. Therefore A/(r) = hll(r)^h'(r) for h{r) = g(r2).
This leads to h^r) = 2rg/(r2) and therefore to h'^r) = 2g'(r2) +4rV(r2)
which entails A/(0) == 2^(0) + 2^(0) = 4^(0). D

LEMMA 4.12. — If Q is admissible, then there exists a strictly plurisub-
harmonic biinvariant function ̂  on 5'max-

Proof. — To get the function -0, we first use [Ne96b, Lemma 5.10]
and the admissibilty of Q to find A i , . . . , \n ^ ^* dominant integral with
Aj; + p € i int Gmin such that

{V € t: W)\j(Y) G 27rZ} = exp^^l) H t.

Then Proposition 5.6 in [Ne96b] entails that for the corresponding highest
weight representations TT\. (cf. Theorem 2.4) we have

n

F|ker7TA,={l},
j=i

n
so that the representation TT := ® TTj yields an injective holomorphic

.7=1
mapping

Tn-Smax —> B^(H)

([Ne95b, Th. 3.7]). In view of Corollary 4.7, the function ̂ (s) := tr7i-(5S*) =
||7r(s)||j is plurisubharmonic because the function /(A) := ||A||| on B^(H)
is strictly plurisubharmonic, i.e., dJdf is a strictly positive (1, l)-form on
the complex Hilbert space B^(^H) (cf. Example 4.3(b)). From ^ = f o TT =
7r*f we conclude that dJdif^ = dJdTT* f = 7r*(dJdf). The differential of the
map TT: Smax ^ B^{7i) is given by d7r{s)d\s(l)X = 7r{s)d7r(X) (cf. proof
of [Ne94a, Cor. 4.7]). Since we can write each s € 5'max as s == pExp(%X),
the spectral theory of selfadjoint operators implies that the operators
7r(5) = Tr^e^^ are injective. Combining this with the fact that kerpr
is trivial, we see that the differentials d7r(s) are injective. Therefore the
(1, l)-form 7r*{dJdf) is strictly positive, i.e., '0 is strictly plurisubharmonic.

THEOREM 4.13. — Let D C 5'max be a G-biinvariant domain. Then a
G-biinvariant smooth function (p on D is strictly plurisubharmonic if and
only if the function ip := ( p o Exp |̂  is stably locally convex.
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Proof. — First we assume that <j? is strictly plurisubharmonic. Since
the mapping Exp: t + P —> D is holomorphic, the function (p o Exp is a
t-invariant strictly plurisubharmonic function on the tube domain t + P,
hence (p |p is stably locally convex as follows directly by applying Lemma
4.11 to affine line segments in Z>.

Let XQ € P, a € A with a(Xo) > 0 and 0 ^ Xc, € flg. By the
same reduction argument as in the proof of Proposition 4.5, we see that for
^y(z) = exp{zXa) exp(Xo) we have

Wz))=^X^f{\z\2)[X^})^

where /'(O) < 0 (cf. Corollary 4.2(ii), Propositions 4.3(ii), 4.4(ii)).

Now 7'(0) 7^ 0 implies that 7 defines a local embedding of an open
disc about 0 into D, hence that <j5o 7 is strictly subharmonic because (p is
strictly plurisubharmonic. Therefore Lemma 4.11 entails that

0<//(0)^(Xo)([X„X;]),

so that d(^{Xo)([Xa,~Xa}) < 0. It follows in particular that [Xc,,X^] -^ 0,
i.e., that g has cone potential. Therefore Theorem 1.6 implies that the
function ^p on D^ is stably convex.

To prove the converse, suppose that (p: D^ —> M is stably convex, i.e.,
^t := ^ \^ is stably locally convex, d^p^X) e -mt{Cxy for all X € P,
and 0 is admissible (Theorem 1.6).

Let X € P and £/ be a relatively compact open convex set containing
X which is invariant under the stabilizer W^ of X and satisfies U C P.
Further we require that a(y) ^ 0 for V € U whenever a{X) -^ 0. Let
^i be the strictly plurisubharmonic function from Lemma 4.12. In view of
the compactness of U, there exists an e > 0 such that (p^ ^ := ̂  — e^p^ ^
is convex and satisfies d(p^^(Y) € -mt(Cxy for all Y € £7. In view of
Theorem 1.6, this also impiies that d^^(Y) e -(C^)* for all Y e H^.
Now Theorem 1.6 shows that the function y?2 is locally convex on Ad(G).£7.
Using Theorem 4.10, we conclude that the function ^2 is plurisubharmonic
on the G-biinvariant open subset G{expU)G C 5max- Now f) = ^2 + ̂ i
and the fact that <^i is strictly plurisubharmonic imply that <j5 is strictly
plurisubharmonic on G{expU)G. Since X was arbitrary in P, it follows
that ip is strictly plurisubharmonic on D. n
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4.2. Invariant geodesically convex functions.

Let M = G/H be a symmetric space, i.e., there exists an involutive
automorphism r of the connected Lie group G such that H is an open
subgroup ofG'7' :== {g e G: r(g) = g}. Accordingly we have a decomposition
8 = b + q of the Lie algebra of g with

^ := {X e g: dr(l).X = X} and q := [X € s: dr(l).X = -X}.

The mapping Exp: q —> M, X \—> exp(X)H is called the exponential
function of M. We call a curve segment 7: ]a, b[—^ M a geodesic segment if
there exists g ^ G and X e q with 7(t) = gExp{tX) for all ^ e]a, b[. Now
a function /: ̂  —)• R on an open subset Q, of M is said to be geodesically
convex if / o 7: ]a, b[—> R is a convex function for all geodesic segments 7
with7(]a,6[) CQ.

We consider the maximal OPshanskil semigroup 5max = GExp{iW^^)
C G(Q, where G(C is simply connected. Let TT: G(C —^ G^/G denote the quo-
tient map of the corresponding symmetric space and Exp: iQ —>• G(^/G the
corresponding exponential function.

LEMMA 4.14. — If (p is a right-invariant plurisubharmonic function
on a right-invariant domain D C Smax, then the function ^:7r(d) i-̂  <^(cQ
on 7r(D) is geodesically convex.

Proof. — Let d € D. Then the geodesies through 7r(d) are given by
7(^) = d. Exp(tX) with X e zg. Let I C R be an interval with 7^) C 7r(D)
for t e I . Then the function

F: I + zR -> R, z ̂  (p(dexp{zX))

is plurisubharmonic and %R-invariant, hence convex. This proves in partic-
ular that the function

J->R, t^(p(dexp(tX))

is convex. This means that ip is geodesically convex. D

As an example due to J.-J. Loeb shows (cf. [Fe94]), a geodesically
convex function on S1(2,C)/SU(2) need not correspond to a right-SU(2)-
invariant plurisubharmonic function on S1(2,C). In this subsection we will
show that for a biinvariant function on a biinvariant domain D C Smax
geodesic convexity and the plurisubharmonicity are equivalent conditions.
In view of Lemma 4.14 and Theorem 4.10, it suffices to show that for a
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geodesically convex function '0 on 7r(-D) C Tr(S') C GC/G, the correspond-
ing function (p: D^ —> R, X »—>• ^(ExpX) is locally convex.

Let q: GC/G —> G^gG ^—> g g * = gg~1 denote the quadratic
representation of GC/G in GC. Then g(ExpX) = exp(2X) for X € zfl
and g maps the geodesic t\—>g. Exp(tX) to the curve

t^ gExp(2tX)g*

in GC. So we have to show that if ^, considered as a function on exp(D^),
is convex on the curves t »—> gExp(2tX)g*^ then the corresponding function
ip on D/i is locally convex.

PROPOSITION 4.15. — Let D = Exp(jD/J C Exp(iH^x) C GC/G
be a G-invariant domain and ^ a G-invariant function on D. Then ^ is
geodesically convex if and only if the function ip:= ^ o Exp: Dh —> R is
locally convex.

Proof. — If ip is locally convex, then the function

(p:Gexp(Dh) -^ M,pexp(X) ̂  <p(X)

is G-biinvariant and plurisubharmonic (Theorem 4.10), hence Lemma 4.14
implies that ^ is geodesically convex.

Conversely, we assume that '0 is geodesically convex. Then it is clear
that (p \Dh.mi ls a l0^^ convex function. Let X G t Fl Dh and a C A~^
with d(X) 7^ 0. In view of Theorem 1.6, we only have to show that
d^(X)(a(X)[X^^a]) ^ 0 holds for all a e A and X^ € sg.

The fact that the function -0 is geodesically convex implies that for
^a ^ S^ the function

t ̂  ^(7(1)) with 7(1) = exp(X). Exp (t{X^ - X^))

is convex. We have to show that (p is decreasing in the direction of
a(X)[Xa,Xa}. We may w.l.o.g. assume that a(X) -^ 0. According to
Corollary 3.2(i) and Propositions 3.3(i), 3.4(i), we find for sufficiently small
t and

St := qW = exp (t(X^ - X^)) exp(2X) exp (t{X^ - ~X^))

an element g € G with q(g.Xt) = gstg~1 = exp (2X 4- 2f(t)[X^,X^}),
where t ̂  f(t) is a symmetric function which is strictly decreasing for small
positive values of t. Hence g.Xt = Exp (X -\- f(t)[Xa^ Xa\) and therefore

^(xt) = ̂ (g.Xt) = y(X + f(t)[X^}).
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Now the convexity and the symmetry of the function 11—^ ^(xt) imply that
it is increasing for small values of t, thus d(^(X)([Xa^Xa\) ^ 0.

This shows that ^Ij^nt l s a convex function with d(p(X)(CX) C R~
for all X C Dh n t. Now Theorem 1.6 implies that the function y? on Dh is
locally convex, n

5. The Stein property of OPshanskil semigroups.

An OPshanskil semigroup S = r(Q,W°,D) is a group if and only if
W = 0. In this case S = G^/D, where G^ is the simply connected complex
Lie group with Lie algebra flc and D C GC is a discrete central subgroup.
As the simple example C/(Z + iZ) shows, not all such groups are Stein. In
the following theorem we recall the main facts on Stein groups.

THEOREM 5.1. — Let G be a connected complex Lie group. Then the
following are equivalent:

(1) G is Stein.

(2) G is holomorphically separable.

(3) Z(G)o^Cn x (C*)771.

Proof. — [MaMo60, pp. 146, 147]. n

We note that (3) in the preceding theorem is the property which is
rather easy to check in concrete situations.

COROLLARY 5.2. — (a) Linear complex groups are Stein.

(b) Simply connected complex groups are Stein, n

The following result will be crucial in the remainder of this section
([MaMo60, Th. 4]):

THEOREM 5.3. — If P —^ B is a holomorphic principal bundle such
that the fiber G and the base B are Stein, then P is Stein, a

Note that we don't have to assume in Theorem 5.3 that the group G
is connected. Hence it implies in particular the classical result of Stein for
the case where G is discrete and P —>• B is a covering.

In many applications the following observation is also useful ([He93,
Prop. l(iv)]).
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PROPOSITION 5.4. — If G is a connected real Lie group, then the
universal complexification G<^ of G is Stein. D

DEFINITION 5.5. — (a) Let W C Q be a generating invariant convex
cone, GC the simply connected complex Lie group with Lie algebra Q(^,
Sw ''= (exp(fl + iW°)) C GC, r(fl,Ty°) the simply connected covering of
Sw, and D C r(Q,W°) a discrete central subgroup. Then T(Q,W,D) :==
F(Q,W)/D is called the OPshanskil semigroup associated to the data
(0, W, D). If, in addition, D is invariant under the involution s i—^ s* induced
by the involution g i—^ 'g~1 on GC, then r({(, W, D) is said to be involutive.
This means that on r(^, W, D) we have an involutive antiautomorphism
5 i—> 5* which is holomorphic on the interior and induces X >—> —X on
Q-\-iW.

(b) In the following we write ̂  := W D {—W) for the edge of W
which is an ideal in Q. We recall from [Ne95a, Th. 1.5 (Hi)] that the group
H(F(^W)) of units of T{Q,W) is the simply connected real Lie group
with Lie algebra Q + i^w Since (^)c ls an ideal in this Lie algebra, the
subgroup corresponding to (^)w)c ls simply connected, hence isomorphic
to the group H := (exp(()^y)c) C GC. D

As a simple example with G = Q = R2, D = Z2, and () == R shows, it
is possible that the image of the group H in F(g, W, D) is not closed. E.g.
it may happen that D C G, G/D is a torus, H ^ C, and H D (G/D) is a
dense wind (cf. Example 5.19(b)).

LEMMA 5.6. — IfS= r(^, W°, D) is holomorphically separable, then
the image H^ ofH in F(s, W, D) is Stein.

Proof. — Let s € S. Then the fact that the left multiplication map
As:^ -> S is holomorphic and injective (cf. [HiNe93, Th. 3.20]) implies
that H\ is holomorphically separable, hence Stein (Theorem 5.1). D

DEFINITION 5.7. — Let Q be a real Lie algebra, () C Q an ideal,
a := f l + ^ ^ Sc? an(^ ^ a connected Lie group with Lie algebra a. Then
A is a so called CR Lie group. If B is a complex group and a:A —> B a
morphism of Lie groups, then we say that a is partially holomorphic if the
restriction of a to the subgroup generated by exp ()^ is holomorphic, or,
equivalently, if da\^ is complex linear.

A partially holomorphic morphism T ] A ' ' A —> Ape in a connected
complex Lie group Ap ̂  is called a universal partial complexification if



COMPLEX AND CONVEX GEOMETRY OF OL'SHANSKII SEMIGROUPS 181

for each partially holomorphic morphism a'.A —> B there exists a unique
holomorphic morphism /3: Ap^ —>• B with f3 o T]A = OL.

The uniqueness of such an object up to partially holomorphic isomor-
phism follows from the universal property. For the existence let G<^ denote
the simply connected group with Lie algebra ̂  and a: A —> GC the canon-
ical morphism. Then a is partially holomorphic. Let N C G(Q denote the
smallest closed complex normal subgroup of GC containing the image of
7Ti(A) under a. Then we define Ap^ ''= G^/N and rjA{o) ''= c^(o)N. Then
rjA'- A —> Ap c is well defined and partially holomorphic.

To verify that (^Apc) has the universal-property, let f3:A —>
B be partially holomorphic. Then there exists a unique holomorphic
homomorphism 7: G^ —> B with d^ |g = d(3 |g. From that it follows that
7 o a = (3 o q, where q:A —> A is the universal covering. Hence 7 contains
0(71-1(1^)) in its kernel. Since ker7 is a closed complex normal subgroup of
GC, 7 factors to a holomorphic homomorphism 7: Ap^ —^ B. This proves
the existence.

We note that if a = Q<^, then A is a complex group, hence Ap ̂  = A.
This shows in particular that the groups Ap^ need not always be Stein, n

PROPOSITION 5.8. — Let S = r(fl, W, D) be a closed OPshanskil semi-
group and rjn^sy'H(S) —> H(S)p^ the universal partial complexification
of its group of units H(S). Then rju^s) extends to a continuous morphism
rjs'- S —> H{S)p^ which is holomorphic on the interior and which has the
universal property of the free complex group on S, i.e., each morphism of
S into a complex group which is holomorphic on S° factors over rfs-

Proof. — First we recall from [Ne95a, Th. 1,5] that H(S) is connected
with fundamental group D. We claim that rju^sy' H (S') —^ H{S)p^ extends
to 5'. In fact, let G<^ denote the simply connected complex group with Lie
algebra 5c, 7: S —> Sw c GC the universal covering morphism of S^y, and
q: GC —> H(S)p^ the canonical quotient morphism. Then 907 \^ „. = rj .-
implies that D = TT-^(H{S)) C ker(^o7| -. ) (cf. Definition 5.5(b)), and it
follows that 907 factors to a continuous morphism rjs'- S —> H(S)p c which
is holomorphic on S°.

Now suppose that a: S —^ B is a continuous morphism which is
holomorphic on 5'° mapping S into a complex group B. Then a \H(S) ls

partially holomorphic and we find a holomorphic morphism /3: H(S)p ̂  ~>•
B with /? o r]H{s) = a \H{S)- Then /3 o rjs = Oi follows by analytic extension.
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This proves that 775: S —^ H(S)p^c has the universal property of the free
complex group on S. a

LEMMA 5.9. — IfW is pointed, then H(S)p^c = H(S)c'

^ Proof. — If W is pointed, then S = F(^TV) = H(S) Exp(W) ^
H(S) x iW (cf. [HiNe93, Cor. 7.35]) and H(S) = H(SY: Hence S =
H(S)Exp(iW) with H{S) = (Expfl). This proves that H(S)p^c = H(S)c.

D

LEMMA 5.10. — If the subgroup H\ := (Exp^l)^)^) C S =
r(fl, TV, D) is closed, then the quotient morphism q: S —^ S / H \ defines
the structure of a complex H^-principal bundle on S and S / H ^ is also a
complex OPshanskii semigroup.

Proof. — We consider the natural morphism q: r(fl, W) —^ F(0i, Wi),
where Q^ := Q/^\y and W\ := W/\}^ is a pointed generating invariant cone
in 0i. According to our assumption that H^ is closed, the subgroup H ' D
of r(fi, W) is closed.

We claim that the mapping q defines the structure of an ff-principal
bundle on r(fl, W). We consider the commutative diagram

r(fl,w) ——p—— Sw
[q [ql

r(fli,Wi) ——^—— 5^,

where q\:G<^ —> GC/H is the quotient map. Then Lemma 3.2 in [Ne94b]
implies that the map q\ o p: r(^, W) —> Sw-^ defines the structure of a
smooth principal bundle with group HTr-^(Sw) ̂  H^i(Sw)-

We conclude that r(fl, W°)/H carries the structure of a complex
manifold such that the quotient map r(fl,TV°) —^ r(Q,W°)/H is the
projection of an H -principal bundle. Since H is simply connected, the
exact homotopy sequence of this bundle yields that r(g, W°)/H is simply
connected and that the action of the discrete group 7r^{Sw)H/H on
nth W°)/H defines a simply connected covering r(fl, W°)/H -> Sw^' We
conclude that r(fl, W°)/H ^ r(fli, W^) = Sw^ and hence that the natural
map q: r(fl, W) —> r(fli, W-y) is an ff-principal bundle, holomorphic on the
interior.
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Now the closedness of HD C r(fl, W) implies that -Di := q(HD) =
q(D) is closed, and hence a discrete central subgroup of r(g^,Wi). Let
Si := T(g^,W^,Di). Then the natural map r(g,lV°) ->• Si factors to a
map 7:5 —>• 5i such that the following diagram is commutative:

r(0,iv°) ——^—— 5
I9 I7

r(fli,Wi°) ——^—— 5i.
The fibers of 7 are the cosets of the normal subgroup H\ := (3(HD) of
r(^, W^ D). Using a right-invariant Riemannian metric on S, it is easy to see
that with respect to the action of -Hi, 7 is the projection of a holomorphic
H\ -principal bundle. D

LEMMA 5.11. — Let S = r(^, W, D) be a closed OPshanskii semigroup
such that D C (Expg-g) holds in S and put G := (Exp^ Q) C S. Then there
exists a G-biinvariant smooth positive plurisubharmonic function (p on S°
such that

lim ^p(sn) = oo
Sn—^S

holds for all s e S \ S°.

Proof. — Let q: S —> S denote the universal covering. Since D C G :=
(Exp^), the G-biinvariant plurisubharmonic functions are in one-to-one
correspondence with the G-biinvariant plurisubharmonic functions on 5'°.
Moreover, since every sequence Sn —> s € S \ S° has a lift to a sequence
5n —^ ^ ^ S \ 5'°, it suffices to prove the assertion under the additional
assumption that 5' is simply connected, i.e., S == r(^, W).

Then H = (exp((}^y)(c) is a normal subgroup of the simply connected
group H(S) (cf. Definition 5.5(b)), hence H is simply connected and closed.
In view of Lemma 5.10, the quotient map p: S = r(Q,W) —> S'i :=
S / H = r(fl/()^v,TV/()^v) defines on 5° the structure of a holomorphic H-
principal bundle. Thus the pullback of a plurisubharmonic Gi-biinvariant
plurisubharmonic function on S^ will be a G-biinvariant plurisubharmonic
funtion on S'. This reduces our problem further to the case where W is
pointed. We assume this.

In this case 5 = GExp(iW) is topologically a product decompo-
sition. Moreover, since W is pointed, Q contains a compactly embedded
Cartan subalgebra t such that W C W^niax. Using [Ne96a, Lemma 3.11],
we find a smooth positive convex G-invariant function -0 on W° with
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lim ip(X) = oo for all XQ € 9W. We put y{gExp(iX)) := tf)(X). Then
J\. ——^ J\.Q

ip is G-biinvariant and, in view of Theorem 4.10, it is plurisubharmonic.

Let Sn -> s C S \ S°. Then s = gExp(iX) with X e 9W. If Sn =
gnExp(iXn), then we have Xn —" X and therefore ^p(sn) = ^{Xn) —^ oo.
This completes the proof, n

After these preparations we can turn to some results showing that
many classes of OPshanskil semigroups consist of Stein manifolds.

PROPOSITION 5.12. — Let S == r(fl,TV,D) be a dosed OPshanskii
semigroup with D C (Expg-g). If r]s: S —^ rfs(S) C H(S)p^c is a covering
with kerrjs C G := (Exp^fl), and H(S)p^c is Stein, then S° is Stein.

Proof. — In view of Theorem 5.3, it suffices to show that the
image rjs(S°) C H(S)p^ is Stein. Hence we may w.l.o.g. assume that
S C H{S)p^' Note that the assumption of Lemma 5.11 is satisfied because
^=7ri(5)C<Expgrfl}.

Let y?i be a strictly plurisubharmonic exhaustion function of H(S)p^,
i.e., the sets (^O-oo.c]) are all compact (cf. [H573, Th. 5.2.10]) and y?2 a
G-biinvariant smooth positive plurisubharmonic function on 5'° which has
the property that ^(^n) —> oo whenever Sn •—> s e S \ S° (Lemma 5.11).
Then (p := <^i + </?2 is an exhaustion function on S. In fact, it is strictly
plurisubharmonic, and for c € R the set ^^G — oo, c]) is on the one hand
relatively compact in H(S)p^c and also closed, hence compact. Thus we
have found an exhaustion function for the open subset S'0 of the Stein
manifold H(S)p^ This proves that 5'° is Stein ([H573, Th. 5.2.10]). n

THEOREM 5.13. — Let S = r(fl, W°, D) be an OPshanskii semigroup
such that

(1) the image H^ ofH in r(fl, W, D) is closed and Stein, and

(2) for Si := r(fl, IV, D)/H\ the mapping rjs^ is a covering onto its
image.

Then S is Stein.

Proof. — In view of Lemma 5.10, the quotient map S —^ Si := S / H ^
defines the structure of a principal Hi-bundle on S. Since H^ is Stein by
assumption, it therefore suffices to show that S\ = T{^^W^D\) is Stein
(Theorem 5.3).
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Since W^ is pointed, Jf(5i)p,c = H(Si)c (Lemma 5.9) is Stein
(Proposition 5.4). Moreover, all other assumptions made in Proposition
5.12 follow from the pointedness of W\. Hence Proposition 5.12 and (2)
imply that 5i is Stein. D

The following corollary and Theorem 5.18 are the main results on the
Stein property of OPshanskil semigroups.

COROLLARY 5.14. — Every simply connected open OPshanskil semi-
group r(s, W°) is Stein.

Proof. — Let S := r{^W). In this case the subgroup H = H\ is
normal in the simply connected group of units H(S) and therefore closed
and Stein (Corollary 5.2(b)). Moreover, the quotient S / H is again simply
connected and therefore of the form S'i := r(^,Wi) with W\ pointed.
Then H{S\}p^ = H(S\)^ (Lemma 5.9) and r ] s ^ ' ' S \ —> Sw^ is a covering.
Hence the assumptions of Theorem 5.13 are satisfied and therefore S is
Stein. D

DEFINITION 5.15. — We call S = T^W^D) regular ifW is weakly
elliptic, i.e., ifSpec(adX) C iR for all X 6 W, and ifD C (Expgrs)' Note
that in this case we have S = G Exp{iW) ̂  G x iW, where G = (Exp^ fl)
(cf. Lawson's Theorem, [HiNe93, Th. 7.34, Cor. 7.35]). So we also write
S=T{G,W). D

LEMMA 5.16. —IfS= F(G, W) is regular, then H{S)p^c == GC.

Proof. — We have H(S) = GExp(z^) and H^ = Jf^exp(^^y),
where Hw = (exp ()^v) is a normal subgroup of G. So H(Sy= C?Exp(zl)^)
and 71-1 (Jf (5)) = 71-1 (G) C G. Hence the smallest closed complex subgroup
of GC containing the image of 71-1 (G) under the canonical morphism G —>
GC coincides with the image of 7Ti(Jf(S')) under the canonical morphism
H{Sy—> GC. Therefore the construction of H(S)p^c (cf. Definition 5.7)
implies that it coincides with GC. n

LEMMA 5.17. — If S = T(G,W) is regular and rjG'.G -^ GC has
discrete kernel, then S° is Stein.

Proof. — According to Lemma 5.16 and Proposition 5.4, the complex
group H(S)p^ is Stein. Moreover, kerrjs = kerrjc is discrete, so that rjs
is a covering onto its image. Therefore Proposition 5.12 implies that S° is
Stein. D
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The following theorem is one of the central results of this paper. We
are grateful to Bernhard Krotz for contributing a key idea which made the
proof work in full generality.

THEOREM 5.18. — The interior S° of a regular OFshanskil semigroup
S=F(G,W) is Stein.

Proof. — Let rjc'-G —> G<c be the universal complexification, a :=
kerd77G(l) and D := 7Ti(G). The group GC is constructed as follows. If GC
is the simply connected complex group with Lie algebra 5^, then we have
a canonical morphism rj—: G —> G(C of simply connected real Lie groups
which is a universal complexification of G. Let B C GC be the smallest
closed complex subgroup containing rj^(D). Since r]^{D) is central in GC,
we see that B C Z(G<c). Now GC = GC/B and therefore a = 6 Fl 5, where
b denotes the Lie algebra of B. It follows in particular that a C 3(5).

We consider the subalgebra t) := Q 4- id of flc and write H for the
associated simply connected group which, in view of the fact that a is
central in g, can be written as H ^ G x ia, so that H := H / ( D x {0}) ^
G x ia. As a normal abelian subgroup of jFf, the group A := exp ac c H
is simply connected, hence isomorphic to a^. Therefore the subgroup
A := expfj ac ^ ^C/{D n A) is isomorphic to C^F, where F C R71- is
some discrete subgroup. Thus A ^ C71 x (C*)771 for some n,m e No, and
so A is Stein. Furthermore the fact that exp^ a = (ker 7^)0 is closed in G
implies that A is a closed subgroup of H.

Let W := a + W C 5. Since the morphism Jf —^ r(fl, W) is injective
(cf. Definition 5.5(b)), we can define S := r(Q,W,D). Then we have the
following commutative diagram of morphisms of OPshanskil semigroups,
where a: S —> S is a covering of the open subsemigroup a{S) of S and
H C S is a closed subgroup (cf. [Ne95a, Lemma 1.11]):

r(s,w) ——^—— r(s,HOi. _ i ^
5=r(G,iv)=r(fl,iv,D) ——'—— 5=r(G,Ty)=r(s,ww

Now the fact that A is Stein implies that 5° is Stein if 5°/A is Stein
(cf. Theorem 5.3). On the other hand the natural map r j y . . : S / A —>' GC
is a covering of the OPshanskn semigroup r]^,^(S/A) C GC. Since GC is
Stein (Proposition 5.4), the open OPshanskil semigroup r]^.^{S° / A ) is Stein
because W / a is a weakly elliptic cone (Lemma 5.17), and consequently
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S° / A is Stein by Theorem 5.3. We conclude that S° is Stein. Therefore
a(S°) C S° is Stein (Lemma 5.11), and the fact that a:S° —^ a(S°) is a
covering entails that 6'° is Stein (Theorem 5.3). n

Example 5.19. — (a) We construct an interesting example of a regular
OPshanskil semigroup S such that r]s is not discrete.

Let s = Re5[(2,R), G = R x Sl(2,Rrand recall that Z(G)
decomposes accordingly as R x Z. Let D := (Z x {0}) + Z(v/2,2) and
G := G/D. Then G contains Sl(2,R)~as a dense normal subgroup,
GC ^ C x S1(2,C), and the kernel of the mapping rig is Pi = {0} x 2Z.
Thus D ker rjg = (Z + \/2Z) x 2Z. The smallest closed complex subgroup
of GC containing its image in GC is C x 2Z. Hence GC ^ S1(2,C) and
therefore T]G does not have discrete kernel. If W C Q is a regular generating
invariant closed convex cone, then 5° :== r(G, W°) is Stein (Theorem 5.18)
even though ker T]G is not discrete.

(b) We construct an OPshanskil semigroup, where ffi is not closed
but nevertheless S° is Stein.

Let Q = R2 = G, D = Z x Z and W = (R+ x {0}) + ̂ , where
^ = R(l, \/2). Then G ^ T2 is a two-dimensional torus, GC ^ C2, and
GC ^ C* x C*. The interior of the OPshanskil semigroup S := r(G,HQ
is a logarithmically convex Reinhardt domain in GC, hence Stein. But
H\ = exp(()^v)c C GC is not closed. It is isomorphic to C, where
exp ()^v C G is a dense wind. D

6. Biinvariant domains of holomorphy.

In Theorem 5.18 we have shown that all regular open OPshanskil
semigroups are Stein manifolds. This applies in particular to the semigroup
'Smax = GEiXp(iW^^)^ where G is any connected Lie group with Lie
algebra g. In this section we turn to biinvariant domains D = GExp(Z)/i)
m 5max and show that they are Stein, i.e., domains of holomorphy if and
only if Dh is convex. In the next section we will even be able to calculate
the envelope of holomorphy of a biinvariant domain in fimax-

THEOREM 6.1. — A biinvariant domain D = GExp(Dh) C S^ax =
GExp(ziy^ax) is Stein if and only if D^ is convex.
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Proof. — First we assume that D^ is convex. In view of [Ne96a,
Lemma 3.11], there exists a smooth convex invariant function (p on Dh
satisfying y(Xn) —^ oo for Xn —> X e <9jD/i.

Let '0 be a strictly plurisubharmonic exhaustion function of 5'max
and (p the G-biinvariant function on D defined by (p(gExpX):= y(X).
Then \im(p(xn) —^ oo holds for Xn —^ x e 9D. Thus ^ + ^ is a strictly
plurisubharmonic exhaustion function on D and [H573, Th. 5.2.10] implies
that D is Stein because Smax is Stein (Theorem 5.18).

Now we assume that D is Stein. To show that D^ is convex we may
w.l.o.g. assume that the group G is simply connected because the simply
connected covering D = GExp(Dh,) is also Stein (cf. Theorem 5.3). Let
V:=D^iiCiC^.

First we consider the closed submanifold TExp(P) C jD. Then
TExp(P) must be Stein, and hence the covering TExp(P) ^ t+P C tc is
Stein. Thus all connected components of V are convex subsets of ii. Since
D is connected, the intersection P^ := T> H t4' must be connected because
otherwise D would be disconnected (Theorem 1.4). Next we show that V^
leaves the connected components of V invariant which in turn shows that
V is connected and therefore convex.

Let (K,K) C K denote the commutator subgroup. Then ( K ^ K )
is semisimple and therefore compact. Since the domain D is (K,K)-
biinvariant and Stein, there exists a strictly plurisubharmonic exhaustion
function (p on D which is (Jf.JQ-biinvariant (cf. [Fe94, Lemma 4.11]).

Let X e T>^~ and write it as X = XQ + Xi with XQ e n (V)
and Xi € z[M]. Put D^ :== {Y e i[t^]:Xo + Y e J9,J, Dx :=
(K^K)exp(D^) C (K,K)(^, and consider the holomorphic map

77: Dx -> D, fcExp(r) ̂  fcExp(V) Exp(Xo) = kExp(Xo + V).

Then rj is a closed embedding, hence y? o T) is a (JC, JQ-biinvariant strictly
plurisubharmonic exhaustion function on Dx. Define the function (p on
D^ by f?(kExpY) = (p(Y). Then y? is a locally convex invariant function
on D^ (Theorem 4.10). Since the set V^ is convex, the same holds for
its intersection with X + [6, ^], hence for the set P^. Therefore Theorem
1.6 shows that </? has a convex invariant extension to the convex invariant
set conv(D^) C i[^^]. Using the fact that f> is an exhaustion function,
we see that the function (p tends to infinity at all boundary points of D^.
Therefore conv(D^) contains no boundary points, i.e., D^ is convex. Since
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W^.X C X + D^ it is contained in the connected component of X in D^..
This proves that T> is convex.

The remaining argument is a rank-1-reduction. Let X € P, a € A^"
and Xa € flg. We claim that X + ̂ '{X^'X^} C P. Of course we may
w.l.o.g. assume that [X^,Xa] -^ 0.

Let first a € Ay!". Then the subalgebra Q^ := span{Xo, z[Xa, XoJ, Xa+
X^,Z(XQ — Xa)} is isomorphic to the four dimensional oscillator algebra
(cf. first part of Section 3), ti := Q^ H t is a compactly embedded Cartan
subalgebra, and Cniax,i := Gmax n ti is the corresponding maximal cone.
Hence the simple connectedness of G shows that we obtain a holomorphic
closed embedding 5max,i = Gi Exp(iTV^ax,i) —>> ^max which is induced by
the injection Q^ —>• Q. Then D D 5max,i is 8- Gi-biinvariant domain of holo-
morphy in 5max,i5 where Pi = P H ii\ is convex. Therefore, for a € Ayi",
we may w.l.o.g. assume that fl = 0i.

We put a = ExpX € D and consider the domain F := U<c,a H D,
where ?7 = (G, G) C (; is the three-dimensional Heisenberg group. Then
r is a domain of holomorphy in the three dimensional complex manifold
U<^a ^ u<c ^ C3 which is invariant under conjugation with elements in G
and (7-biinvariant, where the latter property follows from the normality of
U in G. We claim that

Exp(%u) Exp(X) = Exp(X + zu).

In fact, consider the quotient morphism TT: GC —> G^/U<^. Then

7r(^Exp(X)) = 7r{g) Exp(d7r(X))

implies that the inverse image of 7r(Exp(X)) is given on the one hand by
£/cExp(X) and on the other hand by £/Exp(zu + X). We conclude that
Exp(zu + X) = Exp(m) Exp(X) and therefore that V^a = [7Exp(X + zu).
Thus r = (7Exp(r/i), where I\ C X-\-iu is a G-invariant domain. Therefore

r^ == Ad(G).(r^ n a) c Ad(G).(x + u).
The convexity of T> implies that V D (X -h u) is a convex set and therefore
either a line, a half-line, or a line segment. Suppose that X -(- R^IXoi.Xa]
is not contained in V and let SQ := sup{«: X + s[X^, Xo\ G P}. For Z € 5
we have

Ad(G).(X + Z) = Z + Ad(G).X = Z -h e^^^.X

= Z + {e^^^ .̂X: X^ G flg}
= Z + X - a{X){{X^-^Q + [X,,X,]:X, € gg}.
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It is clear that this orbit is a smooth hypersurface in the three dimensional
space X + m. Let y?: VF^ax — ^ ^ b e a G-invariant stably convex invariant
function and (p the corresponding biinvariant smooth plurisubharmonic
function on 5'max- Then (p\r is a smooth ?7-biinvariant G-invariant strictly
plurisubharmonic function. Hence

r c {p e Uca:f{p) ̂  ^(x + so[x^M)}
because (p is decreasing along the line s i—> X-\-s[Xa-> Xa\. Thus the smooth
boundary 9V contains the point a' := Exp(X + so[Xa,~Xa}) and since (p is
strictly plurisubharmonic, the Levi condition cannot be satisfied in a' (cf.
[Ra86, Th. 2.3, Th. 2.11]). This contradiction shows that SQ cannot exist,
i.e., that X + IT^X^XJ C Z>.

Next we assume that a e. A^g. Then the subalgebra

So := span{z[X^,X^],Xc, +X^,i(X^ -~X^)}

is isomorphic to sl(2,]R) ^ 5u(l, 1). If X is not contained in ^o? we P^
Si := Qo + ̂ zx ^ u(151)- Otherwise we set ^ := flo Q-̂  t! := fli n t-
Let W := l^max H 0i and 5i := r(fli,W°). In view of the simple
connectedness of G, we obtain a closed embedding rj: 5i —> Smax which
is induced by the injection Q^ —> Q. Again, D D 5'max,i is a Gi-biinvariant
domain of holomorphy in <S'i, where T>\ = P n zti is convex. Therefore,
for a € A^~, we may w.l.o.g. assume that S = 0i. Then 3 C TVmax,i
implies Wmax,i = 3 ® ^max,05 where TVmax,o c [s, s] ^ 5l(2,M) is a pointed
generating invariant cone.

We put a = ExpX e D and let X = XQ + Xi with XQ e 3(5) and
OQ = ExpXo. We consider the domain F := (G, G) Exp(Xo + ^[s,s]) H D,
where (G, G) C G is a three-dimensional simple group. Then F is a domain
of holomorphy in the three dimensional complex manifold 5max,o^o which
is (G, G)-biinvariant. Thus F = (G, G) Exp(I\), where I\ C XQ + z[s, fl] is
a G-invariant domain. Therefore

Th = Ad(G).(I\ n ii) C Ad(G).(X + n).

Again we assume that X + M4'^,^] is not contained in V and put
so := sup{s:X + s[X^~Xa\ e V}. Let <^:H^ax -^ R be a G-invariant
stably convex invariant function and (p the corresponding biinvariant
smooth plurisubharmonic function on Smax- Then ^|r is a smooth (G, G)-
biinvariant G-invariant strictly plurisubharmonic function. Hence

r c {p e 5max,oao: W ̂  y(x + so[x^}Q)}
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because y? is decreasing along the line s i—^ X + s[X^,XcJ. Thus the fact
that the boundary 9V is smooth leads, exactly as for a € Ay!", to the
contradiction that the Levi condition cannot be satisfied in a' := Exp(X +
so[X^'X^]) (cf. [Ra86, Th. 2.3, Th. 2.11]). Hence X + R4- [X^, XJ C P.

The preceding two rank- 1-reduct ions imply that [X^.X^] € limP
whenever a C A^ and Xa € flg (cf. Definition 1.5(d)). Since lim(P) =
lim(P) is closed (cf. [Ne98, Prop. V.1.5] and also [HNP94, Prop. 1.1]),
we conclude that Cmm -\-T> C^ T>. From that it follows that D^ is convex
(Proposition 1.7). D

7. Envelopes of holomorphy.

First we recall some basic facts on Stein manifolds (cf. [Ro63]). Let
M be a Stein manifold. Then Hol(M) is a Frechet algebra and one can
identify M with the structure space

5(Hol(M)) := Home (Hol(M),C)

of all continuous C-algebra homomorphisms from Hol(M) to C endowed
with the corresponding weak-*-topology ([Ro63, Th. 2.6]). The corre-
sponding mapping 77: M —> 5(Hol(M)) is given by point evaluations
rj(x)(f) := f(x).

Let D C M be a domain lying in M. Then we have a canonical
restriction homomorphism

Hol(M) -^ Hol(D)

which is continuous. According to [Ro73, Th. 4.6], the space D :=
S( Hol(D)) carries the structure of a Stein manifold such that the canonical
map

9:5->5(Hol(M)) =M

defines on D the structure of a Riemannian domain over M, i.e., q is a
local homeomorphism. The space D is called the envelope of holomorphy
of D. We note that Hol(-D) also carries a Frechet topology obtained by
identifying it with Hol(D). That these two topologies coincide follows from
the open mapping theorem.

The objective of this section is to show that if M = 6max and
D C 5'max is a biinvariant domain, then q: D —> M is schlicht, i.e., an open
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embedding. From that it follows that D is simply the largest bhnvariant
Stein domain in 5max containing D (cf. Section 6).

LEMMA 7.1. — Let H be a Lie group acting on D in such a way that
the mapping H x D —> D is smooth and H acts by holomorphic mappings.
Then the following assertions hold:

(i) The action of H on Hol(jD) is continuous in the sense that the
mapping H x Hol(P) —^ Hol(D) is continuous.

(ii) The action of H on D lifts to an action on D with the same
properties.

Proof. — (i) Since each g € H acts on Hol(D) by a continuous
automorphism, it suffices to prove continuity in {1} x Hol(D). Let /o ^
Hol(D), K C D be compact, and pj<(/) := sup\f(K)\ for / € Hol(D).
Suppose that gn —> 1 and fn —^ /o. We choose K ' C, D compact with
gn.K C K ' for all n € N. For x € K we then have

PK^n'fn - f) ^ PK^n-fn - 9n'f) -^-PK^n'f - f)

= Pg^.K^fn - f) +PK(9n'f - f)

^PK'(fn-f)+PK(9n.f-f).

Since pK'{fn - f) —> 0, it suffices to show that pK^g-n'f - f) —^ 0. But this
follows from the uniform continuity of / on the compact set K ' . Thus we
have shown that the action H x Hol(jD) —> Hol(D) is continuous.

(ii) For h € H let /^: D —> D denote the corresponding holomorphic
diffeomorphism of D. Then p,^: f i—> / o /^-1 is a continuous automorphism
of Hol(D), hence yields a holomorphic diffeomorphism of D. Thus we obtain
an action of H on D by holomorphic diffeomorphisms.

We claim that this action is continuous. Since we know already that H
acts by homeomorphisms on D, we have to show that gn —> 1 and \n —> X
implies that g-n'Xn —> X-> i-e., that for all / € Hol(D) we have

f{9n'Xn) = <Xn^n1./) -^ {xJ}'

Let K C D be a compact set containing \ and the sequence {Xn'-n ^
N}. Since the topology on Hol(D) coincides with the one obtained by
the identification with Hol(D), convergence in Hol(J9) implies uniform
convergence on K. Therefore (i) implies that g^-f —^ /, and hence that
lim^_oo(Xn^n1-/ - /) = °- Therefore

lim^n^n1^ lim(xn,/)=<xJ)n—>oo n—>oo
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and the action of H on D is continuous. That the action is in fact smooth
now follows easily from the fact that q: D —>• M is a local diffeomorphism
and that the action on M is smooth. D

Our main technique to show that in the aforementioned case the
domain D —> D is schlicht, will be by reductions to rather simple cases.
The following observation will be crucial.

LEMMA 7.2. — Let D\ be the envelope of holomorphy of a domain
D\ in another Stein manifold M\ and suppose that we have given a
holomorphic map 7: D\ —r D. Then there exists a unique holomorphic
map

T.fh-^D

with 7 o rjD = ^Di, where TJD'- D —> D and T^i'- D\ —> D\ are the natural
embeddings.

Moreover, if 7 is equivariant with respect to the action of a Lie group
H, then ^f is equivariant with respect to the natural actions of H induced
on D and D\.

Proof. — First we note that 7 induces a continuous homomorphism
of Frechet algebras Hol(D) —> Hol(Pi), and hence a holomorphic map
T . D I ^ D .

The second statement follows from Lemma 7.1(ii) and the functorial-
ity of the extension of the H- action from D to D. D

Now we turn to our more concrete situation. Let D == GExp^D^) and
T> = Dh C\ii C (7^x-111 vlew OI Lemma 7.1, the group GxG acts smoothly
on D such that q: D —>• M is equivariant. Before we can determine the
envelope of holomorphy of D, we have to describe the smallest biinvariant
Stein domain in Smax containing D.

LEMMA 7.3. — Let D == GExp(D/i) C 5max he the smallest biinvari-
ant Stein domain containing D and T> = Dhr\ii. Then V = conv(P)+iCmin-
The set T> can also be characterized as the smallest convex subset ofii con-
taining V and satisfying R-^X^XJ C lim(P) for Xa € sg, a e A^-.

Proof. — In view of Theorem 6.1, the domain D is determined by
Dh = conv(D/i). Note that since the interior of a convex set is open, the
convex hull of the open set D^ is open.
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We apply_ Proposition 1.7 with C = -iD^ C W^ to see that
^ + zCmm ^ i>. Since P is open, P + zCnnn C intP = P follows. Thus
COUV(P) + %Cniin C P.

On the other hand Pi := conv(P) + iC^m is an open subset of iC^
which is H^-invariant. Hence Ad(G).Pi is open and, by Proposition 1.7, it
is also convex.

To prove the characterization of P, we first observe that P is convex
and that for Xa G flg, a € A^ we have

R^X^XJ C iC^n C lim(P).

If, on the other hand, Pi is a convex subset of ii containing V and with
M-^J^.XJ C lim(Pi) whenever Xa € fig, a C A^-, then the definition
of Cmin implies that iCmm S lim(P^). Hence P = conv(P) + zCmin C Pi'
together with the fact that the set on the left hand side is open imply that
PC Pi. ' Q

In view of the preceding lemma, we know that D is in fact a domain
in the Stein manifold D and hence that D must be a Riemannian domain
over the smaller space D. Our main result will be that D —> D is schlicht
and surjective, hence that D = D (Theorem 7.9).

For the following lemma we recall the Weyl chamber ii^ = {X C
ii: (\/a € A^)a(X) ^ 0} which is a fundamental domain for the action of
We on %i

LEMMA 7.4. — Let D C 5'max be a biinvariant domain, X a (G x G)-
space and 7: D —> X a (G x G)-equivariant map. Then 7 is continuous if
and only if 7 o Exp[p^+ ls continuous, where i^~ is a Weyl chamber in i.

Proof. — Suppose that 7 o Exp | pn^ is continuous. Since D =
G Exp(Dh) is a direct product decomposition, it suffices to show that 7oExp
is continuous on D^. In view of Lemma 1.3, it suffices to show that 7 is
continuous on Exp(Ad(^).zC^x)- Suppose that Yn = Ad(kn).Xn -^ Y =
Ad(fc).X, where Xn is the representative of Oy^ in the Weyl chamber ii^.
Then the proof of [Ne96a, Lemma 3.5] implies that Xn —> X. Moreover,
since Ad(K) |e is a compact group, we may w.l.o.g. assume that Ad(fcn) |e
converges to Ad(fc) |e and therefore choose the sequence kn € K in such a
way that kn —> k. Then

7(ExpV^) == kn-r(ExpXn}kn1 -^ k-r(ExpX)k-1

=7(ExpAd(fc).X) =7(ExpV)

implies that 7 is continuous. D
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LEMMA 7.5. — Let X € ii and p C D with q(p) = ExpX. Then
gpg-1 = p holds for all g C Gx = {g e G: Ad(g).X = X}.

Proof. — First we note that since iX C Q is a compact element
and Gx = G^, it follows from [Ne94e, Th. 1.14] that Gx is a connected
subgroup of G. Let Y e Qx = UG^. We write V and V for the vector fields
on D and D corresponding to Y and the action of G given by g.x := gxg~1.
Then the equivariance of q implies that

o=y(ExpX)=dg(p)y(p),
and therefore that V(p) = 0 because g is a local diffeomorphism, i.e., dq(p)
is a bijection. This shows that p is fixed by all one-parameter subgroups of
Gx, hence by all of Gx because this group is connected. D

The following proposition will be the crucial tool in the proof of the
schlichtness of the envelopes of holomorphy of biinvariant domains.

PROPOSITION 7.6. — Let Pi C zC^ax be such that v! n lt+ is

connected and suppose that we have a map

7:Exp(Pi) -^ D

with ( 7 0 7 = idExp(T>i) an^ the property that for X^X' € PI with
X' € We.X there exists k e NK(T) with X' = Ad(k).X and 7(ExpX') =
A;7(Exp X)k~1. Then there exists a unique (G x G)-equivariant holomorphic
map

7:Di :=GExp(Pi)G-^D

extending 7.

Proof. — The uniqueness of 71 follows from the equivariance require-
ment and the fact that D\ = GExp(Pi)G. To prove the existence, suppose
that d = ̂ i Exp(X)^ = g[ Exp(X')^ with x^ xl ^ P!- Then

^2Exp (Ad^)-'^) = gWxp (Ad^)-1.^)

implies that g^ = g[g^ and A^g^g^.X = X1'. Hence Ox = Ox'
and therefore X' € W^.X (cf. Remark 4.4). According to our consistency
assumption, there exists k € NK(T) with X' = Ad(k).X and 7(ExpX') =
A;7(ExpX)JT1.

In view of Lemma 7.5, Ad(k~lg^g^l).X = X implies that

k-lg/^l^ExpX)g^)-lk = 7(Exp(X)),
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i.e.,

^^(ExpX)^)"1 = fc7(Exp(X))fc-1 =7(ExpX').

Therefore

pi7(ExpX)p2 = ̂ ^(ExpX)^ = ̂ (^"^(ExpX')^
=^7(ExpX')^.

So we may define a map

7: Di -^ D by ^i Exp(X)^ '-̂  Pi7(Exp X)g^

The map ^ is G x G-equivariant by construction. It remains to prove
that it is holomorphic. To apply Lemma 7.4, we have to show that 7 is
continuous on We (Pi). The continuity on Pi is clear. For k 6 NK(T) the
continuity on Ad(fc).Pi follows from the equivariance which guarantees that
7(Exp(Ad(A;).X)) = A;7(ExpX)AT1 holds for k € A^(T). Hence Lemma
7.4 shows that 7 is continuous.

Also from the equivariance and ^ 0 7 = = idExp(z>i) we obtain that
( 7 0 7 = idp^. Let X e Pi and [/ be a connected open neighborhood
of 7(X) such that q \u''U —^ q(U) is biholomorphic. Let further V be a
neighborhood of X with 7(V) C £7. Then V -^ q{U),Y i-> <?(7(Y)) = Y is
a holomorphic map. Composing this with (q\u)~1 we get ^\v- Hence 7 is
holomorphic. D

The proof of the main result will consist of several reductions. The
following general lemma on connected components of Weyl group invariant
sets will be used for the reduction to the case where V is connected.

LEMMA 7.7. — Let V C i be an open W^-invariant subset such
that T>^ = T> H i4" is connected, Y C A^ be a basis of the system
of positive compact roots, Y° = {a € Y: (3X e P'^Q^X) = 0}, and
W(° = {{sa'' a € Y0}). Then the following assertions hold:

(i) Pi :== yi^.'D4" is the connected component ofV containing P"1'.

(ii) A Weyl chamber 7(t+) intersects conv(Pi) if and only if it intersects
Pi, i.e., if and only if 7 € W^.

(iii) conv(Pi) is a connected component of>Ve.(conv(Pi)).

(iv) Let a € A^ with s^ ^ )%°. Then U P^(X)] = conv (Pi U
xe-Di

^(Pi)).
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Proof. — (i) Let Pi C T> denote the connected component of P
containing P"1". For a € T° we have Sa(P'1") D P+ -^ 0 and therefore
5a(Pi) S PI because the elements of the Weyl group permute the
connected components of P. Since the stabilizer of Pi in We ls a subgroup,
it follows that P1 := W^P-^) C Pi.

Next we show that P1 is open in P. We have to show that with each
element X the set P1 contains a whole neighborhood of X. In view of
pi = W^P^"), we may w.l.o.g. assume that X € P"^. So let £/ C t be a
convex neighborhood of X such that U Fl t"^ C P4', [/ is invariant under
the subgroup W^ of We, and if a(X) ̂  0, then ker a Fl £/ = 0 for a € Afc.
Since W^ is generated by {s^: a e T H X1-}, we have W^ C W^. On the
other hand U = W^.^nt"^) follows from the fact that i^ is a fundamental
domain for the action of W^ on the cone

{y € t: (Va e A-^ \ x^ia^Y) ^ 0}
which contains U. Hence [/ = W^.07 D t-^) C W^.P+ = P1. This proves
that P1 is open in t.

Now let 7 e We with 7.P1 H P1 7^ 0. We claim that 7 e )%°. Thus,
after replacing 7 by a suitable element in the W^-double coset of 7, we
may w.l.o.g. assume that 7(P+) HP+ ^ 0. Let X € P-^ with -y{X) € P4'.
Then the fact that i^ is a fundamental domain for the action of We on t
implies that 7(X) = X, i.e., 7 € W^. As we have seen above, W^ C W^,
and our claim follows.

Therefore the connected components of P are given by the sets 7.P1

which are mutually disjoint and 7(P1) = 7'(P1) holds if and only if
^-iy e W^. This proves (i).

(ii) Let X C i^~ such that T° = T ^}X-L. Then the set AJ^ := {a €
A^: za(X) > 0} is invariant under the group W^ = W^ and

p+ C C := {V C t: (Va C A^)za(y) > 0}

implies that

conv(Pi) = conv(Weo.P+) C 0

Since {V € t: (Va e T H X-^ZQ^V) ^ 0} is a fundamental domain for the
action of W^ on t, we see that each element in C is conjugate under W^
to an element in f^". Hence a Weyl chamber 7(t+) is contained in C if and
only i f 7 € W^.
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(iii) follows immediately from the inclusion conv(Pi) C C proved in (ii).

(iv) The inclusion "C" holds trivially. So we have to show that the set ?2
on the left hand side is convex, i.e., that for two points V, Z e V^ the line
segment [V, Z] is contained in T>^. This is clear if both points are contained
in Pi or SaC^i). Thus we may w.l.o.g. assume that Y € PI and Z € So(Pi).
Then the line segments between pairs of the type tY -h (1 - t)sa(Z)
and ts^(Y) + (1 - t)Z for t e [0,1] are contained in V^. Now the fact
that {Y,Z,Sa(Y),Sa(Z)} is contained in an affine two dimensional plane
invariant under Sa shows that V^ contains the line segment [Y,Z], hence
is convex, n

LEMMA 7.8. — Let a € A^-, X e V, X^ e flg, V = PC,,XJ, and
£ > 0 such that X + ̂ V e V. Then the curve [0, e] -^ D, s ̂  Exp(X + sY)
extends to a continuous mapping

-rx,Y'^ ^D.

Proof. — Since q: D —>• MD is a local diffeomorphism, lifts are unique,
and one can always extend a lift on a closed interval [0, si] —> D to a slightly
bigger interval. Hence there exists a maximal lift ^x,Y'- [0, so[—> D.

As in the proof of Theorem 6.1, we distinguish two cases. Suppose first
that a € Ay!". Since we may w.l.o.g. assume that Y ^ 0, the subalgebra
5i := spQii{Xo,i[Xa,Xa\^Xa + Xa,i(Xa — X^)} is isomorphic to the
four dimensional oscillator algebra (cf. first part of Section 3). By the
same arguments as in the proof of Theorem 6.1, we may w.l.o.g. assume
that Q = fli because the corresponding domain J9i embeds into D and
91: Pi -^ D^ lifts to a map rj: D^ —> D (Lemma 7.2).

We put a = Exp X e D and consider the domain F := U^aHD, where
U = (G, G) C G is the three-dimensional Heisenberg group. Then F is a
domain in the three dimensional complex manifold U^a ^ u^ ^ C3 which
is invariant under conjugation with elements in G and [7-biinvariant, where
the latter property follows from the normality of U in G. As in the proof
of Theorem 6.1, we obtain F = £/Exp(I\), where I\ C Ad(G).(X + %a).
By passing to the connected component of V n (X + n) containing X, we
may w.l.o.g. assume that this set is connected.

Let q': r —> r denote the envelope of holomorphy of r. Since we have
a canonical map F —> D, it suffices to show that the ray Exp(X + R^Y)
lifts to r. Suppose that the maximal lift with respect to 7 is defined on
the line segment X + [0,«o[^. Let V := {X + sY e V:s < so} and
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r' := £/Exp(Ad(G).P'). Since the Weyl group of Q is trivial, a slight
modification of Proposition 7.6 yields a lift

r'^r
so that we may w.l.o.g. assume that F = F'. As we have seen in the
proof of Theorem 6.1, the smooth boundary 9F contains the point a' :=
Exp(X + SQY) and the Levi-condition is not satisfied in a'. As is shown
in [Ra86, Proof of Th. 2.11, p.57], this implies that there exists a Hartogs
figure H e r such that a € H ^ F. Hence each holomorphic function
on r extends uniquely to a holomorphic function on the domain H U r.
It follows in particular that we can slightly extend the lift of the segment
X-h[0, so[Y to a bigger segment X+[0, SO+^]Y with 6 > 0. This contradicts
the definition of SQ and hence proves that there exists a lift on X 4- R^~Y.

Next we assume that a € Ay^. Then the subalgebra

flo :=span{z[X^,Xj,Xa+X^(^o' -XQ}

is isomorphic to 5[(2,M) ^ 5u(l, 1). By the same reductions as in the proof
of Theorem 6.1, we may w.l.o.g. assume that S == So- Let SQ be maximal
such that the ray X + [0, so[Y lifts to D. With the same argument as in the
solvable case we see that we may w.l.o.g. assume that X 4- [0,«o[^ ^ ^-
Now the smooth boundary 9D contains the point a' := Exp(X + soY) and
the Levi-condition is not satisfied in a'. So the same argument as above
shows that there exists a lift of the ray X + IR^'V. n

THEOREM 7.9. — For each biinvariant domain D C Smax the mapping
D —^ D is schlicht, i.e., the smallest biinvariant Stein domain in 5max
containing D is the envelope of holomorphy of D.

Proof. — Let t~1" C t denote the Weyl chamber associated to A^~. Then
V^ := V D ii^~ is connected because D is connected (cf. [Ne96a, Lemma
3.5]). We write Pi C V for the connected component of P containing P4'.
We put DI := TExp(Pi) and note that the envelope of holomorphy of
DI is given by Pi == TExp(convPi) (cf. [H573, Th. 2.5.10]). Therefore we
obtain an embedding 7: D\ —> D with 907 = id---. To check the consistency
condition of Proposition 7.6, we first note that, according to Lemma 7.7(ii),
conv('Di) C W°(zi~^). Since the mapping T)\ —> T> is equivariant with
respect to the action of the group W^, it follows from the second part of
Lemma 7.2 that for 7 = Ad(k) \^ e W? with k e N^(1) we have

7(ExpAd(fc).X) =k-y(ExpX)k~1
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for each X € conv(Pi). Hence the consistency condition of Proposition 7.6
is satisfied and we obtain an extension

7:^2 := GExp (conv(Pi))G -^ D.

Since D C D^ is a subdomain which lifts to £>, we see that D = D^.
Therefore, in view of Lemma 7.7(iii), we may w.l.o.g. assume that the
connected components of the set T> are convex. We note that, according
to Lemma 7.7(i), the connected component Pi of P containing P4" is
invariant under the group W^. It follows in particular that for X € Pi
and Sa € W^ the line segment [X,Sa(X)] = conv{X,Sa(X)} is contained
in Pi. If We = W^ this implies that Pi == P, hence that P is convex.
Suppose that this is not the case and that a € Aj^ satisfies Sa ^ W?. Then
Sa(Pt) H Pi = 0 and Lemma 7.7(iv) implies that

?2 := |j [X^Sa(X)} = conv (Pi U 5,(Pi)).
xe-Di

Now let X ePi and put Y := ^(X-}-Sa(X)). LetVa :=RdD(Pi-y)
and note that this set is a line segment in Rd. Let G^ C G denote the
subgroup with Lie algebra 5°' := 5^ + zMd ^ 5u(2). Hence

Da := GaExp(Pc,)(?a C Gg

is a G^-biinvariant domain. Then it follows from [Fe94, Kor. 3.8] that
Da -^ G^ is schlicht, i.e., that Da C Gg. Moreover Da = G0' Exp(PJG?a

with P^ = conv(Pa). Hence the inclusion

Da -^ D, Exp(Z) ̂  Exp(V 4- Z) = Exp(V) Exp(Z)

extends to a mapping ^y'-Da —> D. Since ?2 is covered by the lines
V + Rd, Y € kera, we therefore obtain a lift 7: Exp(?2) —> 5, V + sa ̂
7v(Expsd).

We claim that 7 is continuous. In fact, let X C PI and Y as above. Let
further U be a neighborhood of Y in ker a and P^ C Pc, with P^ + U C Pi.
Then the mapping

Exp(P^ +[/)-. Exp(P^) C £^ Exp(Z + Y) ̂  Exp(Z)

is continuous. Let / e Hol(D). Then, to see that Y \-> f o ̂ y \ —o is
•L-Ot

continuous, it suffices to check that Y \—> f O^Y\D° is continuous, which
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trivially follows from f(^vW) = /(Exp(Y)A;). We see in particular that
for a given Z € conv(Z^) the mapping

V ̂  7y(ExpZ) == 7(Exp(V + Z))

depends continuously on Y. Therefore the fact that q: D —> D is a local
homeomorphism and 9 0 7 = idExp(T>2) implies that 7 is continuous.

Next we check the consistency condition. Let ka € G0 with
Ad{ka) I f = 5a. Then the (G^ x G^-equivariance of the mappings 7y
implies that

7(Exp(Ad(^).(V + Z))) == 7(Exp(V + Ad(^).Z))
== 7y(Exp(^.Z)) = ^7y(ExpZ)^1 = ^7(Exp(V + Z))k^\

Now Proposition 7.6 implies that 7 extends to a (G x G)-equivariant lift

7:D2:=GExp(P2))G^D.

As before, we therefore can assume that D = D^, hence that SQ G W^.
After repeating this process at most finitely many times, we see that we
may w.l.o.g. assume that W^ = H^, hence that V is a convex subset of ii.

Now let a e A^ and put Pi := P 4- B^a. We want to obtain a lift
Exp(Pi) —> D. So let Y = [Xo^~Xo\ with a e A^. Let V denote the vector
field on D which is the unique lift of the vector field on D given by

y(p) := d Exp(tV).
dt t=o

Then, according to Lemma 7.8, this vector field is forward complete on a
subset of D containing Exp(P) C D C D. Hence the mapping PxR4' —^ D,
(X, s) ̂  7x,r(5) is continuous. Thus we obtain a lift

7: Exp(P + R4^) -^ D, Exp(X + sY) ̂  7x,v(s)

which is continuous.

Suppose that Y e it4". Then P^ := P+R+V C ̂ +. Now Proposition
7.6 provides a (G x G)-equivariant extension of the mapping 7 lexpCD^)
to the domain D\ := GExp(p~^)G. Hence we may w.l.o.g. assume that
P4' -h R^'y C P4'. In view of what we have shown so far, we may also
w.l.o.g assume that P is convex, hence that T> 4- TSi^Y C T). Since T> is
also invariant under the Weyl group W^, it follows automatically that
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cone(H^.y) C lim('P). This shows that the assumption Y e ii^ was no
limitation of generality. Let

Cmin,s := cone{i[Xa,Xa]:Xa € flg,a € A^J.

Then the cone Cmin.s is generated by finitely many rays, hence, after
repeating the above steps finitely many times, we may w.l.o.g. assume that
^ + Cmin,s C P.

Next we consider the case when a € Ay!". Let (^rOneN be a countable
set of generators of the cone zCmin,z? where

Cmin,z := cone{i[Xa,Xa]:Xa € sg,a € A^}

and V^ = P^^2] with X^ € sg. Inductively we define

PO := P and 2^+i := Pn + IT^n.

Then the same argument as above shows that the embedding Exp(Pyi) —> D
extends to an embedding Exp(Pn+i) —^ P. Note that at each step the fact
that Yn is central implies that Vn is invariant under the Weyl group. Since
the cone lim^') for the open convex set V := |j Vn is closed, it follows

neN
that it contains iCmm- Thus P' = V follows from Lemma 7.3.

At each step the consistency condition follows from the fact that Yn
is fixed by H^ and the uniqueness of the extension. Hence Proposition 7.6
yields a lift

7:D:=GExp(P)G->5.

Then the connectedness of D and the fact that D is a Riemannian domain
over D implies that ^(D) = D, so that D —> D is schlicht, and finally that
D = D. Thus we have shown that each holomorphic function on D extends
uniquely to a holomorphic function on D. D
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