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FIBRATION OF THE PHASE SPACE FOR THE
KORTEWEG-DE VRIES EQUATION

by Thomas KAPPELER®™)

1. Introduction and summary of the results.

It is well known that the Korteweg-de Vries equation (KdV)
U + Uypgr + uuy = 0, considered on the circle, is a completely integrable,
infinite dimensional Hamiltonian system. The periodic eigenvalues of the
Schrédinger operator —y"” + u(.,t)y = Ay are invariant under the flow by
KdV and give a complete set of conserved quantities. Thus the level sets of
KdV are the isospectral sets Isoq of potentials, where Iso ¢ consists of all
potentials p such that —d2 + p and —d2 + ¢ have the same periodic spec-
trum. These isospectral sets are compact and connected and are generically
an infinite product of circles.

For finite dimensional completely integrable Hamiltonian systems
with regular compact, connected level sets, Liouville’s theorem implies that
the phase space is fibrated by the level sets. I would like to examine in
which sense this result can be generalized to KdV and what are the global
properties of this fibration. Taking various properties of isospectral sets
into account, I introduce for this purpose a model space, M, consisting
of sequences R = (Ry)r>1 of 2 x 2, symmetric, trace free matrices with
Z |IR|I> < co. For R = (Ry)k>1 in M, denote by IsoR := {(R)i>1 :

k>1

(*) Partially supported by NSF.
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spec R}, = specRy, Vk > 1}. It is immediate that IsoR is compact,
connected and, generically, an infinite product of circles. In this paper I
prove that the space of L2-potentials with average 0 can be mapped into the
model space by a real analytic isomorphism ® with ®(Isoq) = Iso(®(q)).
This shows that the infinite dimensional fibration by isospectral sets of
potentials is trivial. Recall that the phase-space of KdV can be chosen to
be C(SY) := {qg € C*(S?) : fol g(z)dz = 0} with symplectic structure

given by —. Thus a C*-version of the above result would be needed in

order to apply it to KdV. To avoid technicalities I restrict myself to N-gap
potentials. As it will turn out, the above result directly applies in this case.

In order to define the map ® from the space of potentials into M, I
use the following properties of the 1-dimensional Schrédinger operator

(1) -y"(z) +q(x)y(2) = My(z); y(@z+1)=y()
where ¢ is in L? := L?|0, 1], periodically extended to all of R :

(i) fol qdz is a spectral invariant. Thus I may choose L2 := {q € L3 :
fol gdz = 0} as space of potentials.

(ii) The spectrum specq of (1) (with multiplicities) determines the
antiperiodic spectrum, i.e. the spectrum of the operator —y" + qy =
Ay; y(z +1) = —y(z).

(iii) Denote by (An)n>0 the union of the periodic and antiperiodic
eigenvalues arranged in increasing order. Then A\g < A} < A2 < A3 < Ag...
i.e. (An)n>1 comes in isolated pairs.

(iv) For ¢ in L, 3 (A2n — A2n—1)? < 00.
n>1

Then the map ® : L2 — M is defined by ® = (®,,),>1 where ®,(q) is
a trace free version of the restriction —d?2 +¢q on the 2-dimensional subspace
E,(q) generated by an orthonormal pair of eigenfunctions f;,—; and fa,
corresponding to the eigenvalues A2, and A»,. More precisely, I provide
an orthonormal basis {G2,,—1,G2,} of E,(q), depending analytically on ¢
and defined on all of L2. ®,(q) is then given by expressing the restriction
of —d? + q — (A2n—1 + A20)/2 to E,(q) with respect to this basis. Clearly,
one cannot choose for {G2,—1,G2,} the two eigenfunctions fz,—1 and
fon as they do not depend smoothly on g, due to the possibility of
double eigenvalues A2,—; = Az,;. I would like to point out that the
Dirichlet eigenvalues (u,,),>1 which are often used, together with additional
variables, as coordinates of isospectral sets, are not part of the restriction
to isospectral sets of the above global coordinates, provided by ®. For a
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potential p in an isospectral set Isoq, the u,’s have to stay within the
interval [A2,-1(¢), A2 (¢)], whose end points do not depend smoothly on q.

The main results of this paper are the following :

THEOREM. — (1) @ is a real analytic isomorphism
(2) @ preserves isospectrality, Iso ®(q) = ®(Isoq)

(3) @ = (®,,)n>1 is closely related to the Fourier transform :

‘j‘Zn qA‘Zn—l logn
D,.(q)=1{ - . +0(——
(q) (q2n——l —(1211) ( n )

uniformly on bounded sets of potentials in L3 where

q= E Gan COS 2TNT + G2n—1 SiD 27TNX.
n>1

The main work of the proof consists in showing that the derivative
d,® : L3 — M is a linear isomorphism. To show this one has to prove that
certain expressions involving products of eigenfunctions form a basis of L3.
I provide a new general method to do that (cf. section 6).

This theorem can be applied to the so-called finite gap potentials.

Define Gapy := {q € L% : dan(q) = A20-1(q), Yo > N + 1} and
Gapy,, := {q € Gapy : A2a-1(9) < A2a(q), 1 < n < N}. Elements
in Gapy, are called regular N-gap potentials. It is well known that
potentials in Gapy are, in fact, real analytic. Observe that Gapy =
®"{R = (Ri)k>1 € M : R, = 0Vk > N + 1} and thus Gapy is a
2N dimensional manifold. Clearly Gapy , is an open set of Gapy and
®(Gapy,) = (RT*)N x TN (diffeomorphically) where R* = {z : z > 0} and
TV denotes the N-torus (S*). Obviously Gapy , is invariant by KdV.
Therefore, with the symplectic structure coming from KdV, it follows from
the above theorem that (R*)N x TV is a symplectic manifold of dimension
2N with a trivial fibration by‘Lagra.ngian tori TV. Adopting a definition
of global action-angle variables due to Duistermaat [Du] one obtains the
following

COROLLARY. — Wohen restricted to regular N-gap potentials KdV
admits global action-angle variables.

The paper is organized as follows :
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2. Model space

3. Auxiliary results

4. Global coordinates : Definition and first properties
5. The derivative of ®

6. Local properties of ®

7. Global properties of ®.

In a subsequent paper this technique is applied to obtain various
results concerning the spectrum of Schrédinger operators on 2 dimensional
flat tori.

Notation. — L% := L?[0,1] denotes the space of square integrable
real valued functions on the unit interval with inner product (f,g) =
fol fgdz. Denote L2 := {f € L? : fol fdz = 0}. For q in L?, denote
by (An)n>o the union of periodic and antiperiodic eigenvalues of (1)
with multiplicities arranged in increasing order. Further introduce 7, =
(A2n+A2n-1)/2. Let (fr)n>0 be a L2-orthonormal system of eigenfunctions
corresponding to the eigenvalues (A, )n>o with the properties : (i) f,(0) > 0
or fn(0) = 0and f,(0) > 0and (ii) if Agn—1 = Azn, then fo,_1(0) = 0. They
satisfy f;(z+1) = (-1)"f;(z) for j € {2n—1,2n}. E, = E,(q) denotes the
2-dimensional subspace of L? generated by fa,—1 and fa, and P, = P,(q)
the orthogonal projection L? — E,. As usual, y1(z) = yi(z,),q) and
y2(z) = ya(z, A, q) denote the solutions of —y” + gy = Ay (z in R) with
(31(0),1(0)) = (1,0) and (y2(0),33(0)) = (0,1). A(X) = A(A,q) denotes
the discriminant, A(A) = y1(1,A) +y3(1, A). Further denote by (tn)n>1 the
Dirichlet eigenvalues of g, i.e. the eigenvalues of the operator —y" +qy = Ay
with y(0) = y(1) = 0. Then u, = p,(q) depends analytically on ¢ and
satisfies Agn—1(¢) < pn(q) < A2a(q). Denote by (gn)n>1 the orthonormal
system of eigenfunctions corresponding to the eigenvalues (pn)n>1 with
the property that g/ (0) > 0. Finally denote by (¥»)n>0 the Neumann
eigenvalues of g, i.e. the eigenvalues of the operator —y" + qy = Ay with
¥'(0) = y'(1) = 0. Then v,, = v,(q) depends analytically on g and satisfies
A2n-1(9) £ vn(q) < A2n(g) (n > 1). Denote by (hn)n>0 the orthonormal
system of eigenfunctions corresponding to the eigenvalues (V5 )n>0 with the
property that h,(0) > 0 (all n > 0). More details about these eigenvalues
and eigenfunctions can be found in [CL], [MW], [Ma)], [PT]. I denote by
Hlf;e, the space of functions f in Hf (R) which are periodic of period 1.
By H*[0,1], I denote the space of functions in HJ (R) restricted to the
interval [0, 1]. By £2(N) I denote the space of sequences (z»)n>1 such that

lzlli = ( E n2kg 2)1/2 < 00. For two Banach spaces X; and Xs, I denote
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by £(X;, X:) the space of linear operators from X,; to X, with the uniform
norm. For functions f = f(z,A) depending on a real variable z and a
possibly complex spectral parameter A, the partial derivative df/dz with
respect to x is denoted by f’ and the partial derivative f/9A with respect
to X is denoted by f.

Let X be Banach space. A sequence (z,),>; in X is said to converge
weakly to z € X if liIEO L{z,) = L(z) for all L in the dual of X.

2. Model space.

In this section I describe the model space, define what it means
for two elements in the model space to be isospectral and describe the
isospectral set. Denote by M, the 2-dimensional R-vector space of all

a b
symmetric trace free 2 x 2 matrices, i.e. matrices of the form b ),
a

b
with norm || ((11) || = Va2 + b2. Denote by M the Hilbert sum
-a

of Moy, i.e. the space of all sequences R = (Ry)i>1 in My such that
IR :==( X ||Rk||"")1/ ? < 0. Clearly M can be identified isometrically
k>1

with ¢2(N) @ £2(N) and thus, via Fourier transform, to L2. Two elements
0

aj bk
R = (Ri)i>1, Ri= ( ) ’

bk — ag
and S=(St)>1, Sk= (ak P ) )
Br —ax

are said to be isospectral if spec R, = specSy for k > 1 where spec Ry,
denotes the spectrum of the 2 x2 matrix Ry. Clearly R and S are isospectral
if and only if a? + b} = a} + B for all £ > 1. Define for R in M

IsoR :={S € M : S and R are isospectral}.

Then IsoR is an infinite product of circles, the radii of which are given
by \/a; +b7. This implies that Iso R is compact and, generically, not a
manifold. However in a straightforward way one can define tangent and
normal spaces at each point of Iso R. I summarize these results in the
following
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PROPOSITION 1. — Let R = (Ry)r>1 bein M. Then
(1) J|R&|| is a spectral invariant (all k > 1).

(2) Iso R is a compact connected torus in M, consisting generically
of an infinite product of circles.

3. Auxiliary results.

For a potential ¢ in L3 periodically extended to all of R, consider
Hill’s operator —d2 + ¢ on [0,1]. Let (f,)n>0 be the orthonormal system
of eigenfunctions corresponding to the eigenvalues (A,)n>0 as described in
the introduction. It is well known that both fa,_1 and fs,, have precisely n
zeroes in [0, 1) all of which are simple. Fix n and denote the zeroes of fo,—1
and fo, by 0<y; <y...<yp,<land0< 2z, <23 <...< 2, <1. By
a standard deformation argument, considering the 1-parameter family of
potentials 7¢(x) (0 < 7 < 1), one can prove that (¥;)1<j<n and (2j)i1<j<n
interlace.

Next we will need the following

LEMMA 1. — For qin L and n > 1, E,(q) — R?% f —
(f(0), f'(0)) is a linear isomorphism.

Proof. —— Fix g and n. It suffices to show that f,,(0)f},,_,(0) —
Sfan—1(0)£5,,(0) # 0. To prove it, introduce the Wronskian

I/V(-']:) = f‘Zn(x)fén—l(x) - fz”n(x).f?n—l(x)'
Observe that
W’ = ()\211 - /\2n—1)f2nf2n—l-

Denote the zeroes of fo,—; and fo, by 0 < 1 < ... < ¥, < 1 and
0< 2z <...< 2z, <1. According to Lemma 1 we may assume, to make
notation easier, that ¥, < z; <y2 < ... <y, < 2,. Then

W(z) = W(y1) + (A2n — A2n—1) ’ fonfon-1.

n
Further observe that fa,fon,—1 is a periodic function of period 1. It thus
suffices so show that W(z) never vanishes for y; <z < 1+y;. Without loss
of generality we might assume that fj,_,(y1) > 0 and fan(y1) > 0. This
can always be achieved by a suitable renormalization of f5,—; and fap.
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Then fan—1(y2) = 0, fi,—1(y2) < 0 and fo,(y2) < 0, etc. . One concludes
that W(y;) = f2n(y;) fan—1(y;) > 0. In the case Ay, = Azp—1, One obtains
W(z) = W(y;) > 0. In the case where A2, > A2,-; one observes that
W (z) is increasing in the intervals [y;, z;] and decreasing in the intervals
[2j,y;j+1]. This shows that n}cin W(z) =12nji<nn W(y;) > 0. a

For q in L3, denote by P,(q) the orthogonal projection of L? into

E.(q). Pn(q) has a representation of the form P,(q) = _%z: / R()\, q)d\
r,

where R(),q) denotes the resolvent (—d2 + g — A)~! and where T, is a
circle in the complex plane such that Ay, and Ag,—; are inside and all
other eigenvalues outside I',,. For the next results, consider [Ka) as a general
reference.

LEMMA 2. — (1) Forn > 1, P, : L§ — L(L* H},) is real
analytic.
(2) P, is compact, i.e. if (g;);>1 is a sequence in L3, converging weakly
toq, then lim sup [|Py(q;)f — Pu(@)flicz/lfllLz = 0.
. I feL?
(3) The derivative of dg, P, [p] of P,, at qo in direction p is given by

1
dPoli) = 5 [ ROV)pROLa0)

(4) Pn(ql))dq(»Pn [P]Pn(CIo) =0.

Now I introduce the so-called transformation operators. Fix ¢ in
L2. Following Kato [Ka] I denote by U, (g) the transformation operator
Un(9) : En(qo) = Hpe, given by (Id =(Po(g) = Pu(40))*)!/*Pu(q). Ua(q)
is defined for ¢ in a sufficiently small neighborhood V of ¢, which might
depend on n. It turns out that the image of U, (q) is E,(q)-

LEMMA 3. — Letn > 1 be given.

(1) Uy, is real analytic as function from V into L(E,(go), HZ,)-

(2) U, is compact i.e. if (q;);>1 is a sequence in V' converging weakly
to a limit ¢ in V then lim U,(g;) = Un(q) in the operator norm of
j—oo ‘

L(E.(q0), L2)
(3) dqo Ull [p] = d‘lu Rl [p]

Next, for the convenience of the reader, I collect a few well known
results concerning Hill’s equation. For reference cf. [Ma], [MW] and [PT].
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LEMMA 4. — (1) Fork >0, A, : L2 — R is weakly continuous.

(2) The Ay’s have the following asymptotics :
= k*n? 4 | / “amikeg(z)dz| + O(3)
Aog—1 = k*n? — I/ 6'2"ik’”q(:v)dx| + O(E)
0

where both error terms are uniform on bounded sets of potentials in L32.

LEMMA 5. — (1) Fork > 1, u; : L2 — R is weakly continuous.
(2) The py.’s have the following asymptotics

)-

1
we = k*w? — / cos 2mkzg(z)dz + O
0

?rl»--

(3) For k>0, vy, : L — R is weakly continuous.

(4) The v;,’s have the following asymptotics

1

v = k*x? +/ cos 2rkxg(z)dz + O(%)
0

LEMMA 6. — (1) g2(1,)) = B — A

: Y211, - k272
k>1
y2(1,A2) _ 1(=1)" logn
2 Aan — fhn T 9 n2x2 (1 +0( n ))

y2(1,A2—1) 1 (=1)"*! logn
= = 1+0(——
(3) Hn — A2n—1 2 n2x? ( + ( n
are uniform on bounded sets of potentials in L2 and where for ji,, = Agp—1
J2(1 )‘211—1) resp y2(17/\2n)

Hn — A2n—1 A2n — Hn
corresponding derivative ya(1, pip).

)) where the error terms

or i, = A2p, the formulae are replaced by the

LEMMA 7. — (1) 5(1,3) = (o~ X) J] %2
k2m?
k>1
y1(L,A2,) _ 1 ntl log n
) TR — (-~
(2) F— 5(~1) (1+0(==))

n— 1

(3) yl(l AZI 1) -
Vp — /\Zn—-l 2

nations as in Lemma 6.

log n

(-1)™(1+0( )) with corresponding expla-
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Next recall that the discriminant is defined by A(A) = y1(1,)) +
y5(1, ). Then

LEMMA 8.

(1) AQ\)2 —4 = 4(2o — A) nl;[l (Aon — '\1)13;\3»—1 )
(@) AQgn) = (1)1 22 At (g 4 (18T
(3) Adgumr) = (-1 222 At (g 4 (18T

logn
4) A(w?® -4 = W(xzn (s = dan-1)(1 + O(—=— g )) for
Aap—1 < p< A2n.

As a consequence of Lemmas 5, 6, 7 and 8, one gets

COROLLARY 9. — If Agp_1 < A2y, then for j € {2n — 1,2n}
y2(LA)) |Aj = pn] logn

1) -= = 1+0

( ) A()\]) (/\211 - /\211—1)/2( ( n ))

Yi(LA) o o A =l logn
2 X0 = 51+ 0 .
( ) A()\J) n-mw (/\2’,1 _ /\211—1)/2( ( n ))

Finally I will need the following well known representation of the
eigenfunction f, corresponding to a simple eigenvalue.

LEMMA 10. — For q in L, and )\, a simple eigenvalue
Fa(,q) = (—=y2(1, /\n.)/A()‘71))1/27Jl (, n,q)
+0u (41 (1, M) /A ?y2(2, An, @)

where the sign o, of the second radical is given by the sign of

(_1)[%]+1(y1(17 )\n) - 3/!2(17 ’\n))

4. Global coordinates : Definition and first properties.

In this section I introduce a map ® from the space of potentials L3
into the model space M which preserves isospectrality. I show among
other things, that @ is real analytic and prove that asymptotically ®
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is closely related to the Fourier transform. Fix ¢ in L2. According to
Lemma 3.1 there exists a unique element Gs,—i1(z) = Gan-1(z,q) in
E,(¢) such that Gy,-1(0) = 0, G},_;(0) > 0 and ||G2p—1]lLz = 1.
Define G3,(z) = Gau(x,q) in E,(¢g) by requiring that (Gan,Gon-1) = 0,
IG2nllL: = 1. The sign of G»,(0) is determined by requiring that the
oriented angle between Ga,—; and Gy, is —m/2 where the orientation is
provided through the map E,(q) — RZ%, f — (£(0), f'(0)). Clearly G2,
and G, are linear combinations of f,, and fa,—; where (fi)r>0 denotes
the orthonormal system of eigenfunctions of —d? + q as specified in the
introduction.

DEFINITION. —  ®(q) := (®,.(¢))n>1 where ®,(q) is given by
( (G‘va (—di + q- Tn)G2n) (G'Z'n, (—di +q- Tn)G2n—1) )
(G2n—l ) (‘_di +q- Tn)G‘)n) (G‘zn——l ’ (_di +q - Tn)G‘zn—l) '

First let us show that ®(g) is an element in M. For this purpose,
express Gy, and Ga,— in terms of f,, and fo,—;. Define €, to be the
signature of the Wronskian W|f2,, f2,—1](0). Then

(G2n) costd, —sind, ( fon )
Gan-1/) ~ \ sin®, cosd, enfan—1

where 9,,, up to 2w, is uniquely determined by the chosen normalizations
of the f’s and G’s. A simple computation shows that

A2n - )‘211—] ( (0] 2’0" sin 2’0,1 )

D, =
n(a) = ( 2 sin249, — cos2v,

Thus ®,,(¢) is symmetric and trace frece and its eigenvalues are £(\2, —

A2n—1)/2. Moreover it is well known that for ¢ € L3, Y (A2 — A2n—1)? <
n>1
oo uniformly on bounded sets of potentials. Thus I have proved

LEMMA 1. - & maps L} into M and is bounded.
Next I want to show that ® preserves isospectrality.

PROPOSITION 2. — Let p and ¢ be in L%. Then spec(—d2 + p) =
spec(—d? + ) if and only if ®(p) and ®(q) are isospectral.

Proof. - Assume spec(—d? + p) = spec(—d? + q). Then \,(p) =
/\n((l) (" 2> l) In l)a'l.tiClllal' /\271(1)) - /\‘2n—1(p) = ’\271((1) - ’\211—1(q)'
Thus, by the representation of ®,,(¢) above, we see that ®(p) and ®(q)
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are isospectral. Conversely, if ®(p) and ®(q) are isospectral, then Ay, (p) —
A2n—1(P) = A2n(q) = A2n-1(g) for all n > 1. But this implies A,(p) = An(q)
(n > 0) (cf. e.g. [Kp] for an elementary proof).

The next results concern the identification of the range of & when
restricted to even potentials in L2, i.e. potential satisfying g(x) = q(1 —2).

PROPOSITION 3. — Let q be in L2. Then

(1) ®,(q) is diagonal if and only if p, € {Aapn—1, A2n} where p,,, as
usual, denotes the n’th Dirichlet eigenvalue of —d? + q.

(2) q is even if and only if ®,(q) is diagonal for all n > 1.

Proof. — (1) If p, is a periodic or antiperiodic eigenvalue, then
Gap-1 € {f‘)n—laf'zn} and thus {G'zn—l,iGm} = {f‘.’n—l7f2n}' This
implies that ®,(¢) is diagonal. Conversely if

’\211. - /\211—1 ) (COS 2’(9" sin 219,, )

o =
n(a) = ( 2 sin2y,, — cos?29,

is diagonal then either Ay, — Aoy —1 = 0 and thus fo,,—1 = G2p—1, fon, = G2y
or ¥, € {kx/2:k € Z}. But then {*G2,,G2n-1} = {fon, fou-1} and thus
Gun-1(1) = G2;,—1(0) = 0 and thus pu,, is a periodic eigenvalue.

(2) It is a well known fact that ¢ being even implies {un,vn} =
{Aa2n, Agn—y } for all n > 1, where v, denotes the n’th Neumann eigenvalue
of —d2 +q. Thus by (1), ®,(g) is diagonal. The converse follows from [PT],
Lemma 3.4.

Next let us investigate the analytic properties of ®(q). First we need
to study certain properties of G, (n > 1). Observe that f,, and fz,—; are
cigenfunctions of —d?2 + g but do not depend smoothly on g. In contrast to
that G, and Gy,—; are not necessarily eigenfunctions, but they depend
analytically on ¢ as the following result shows :

LEMMA 4. -~ For all n > 1, G,(.,q) is real analytic when
considered as a map form L3 into H2[0,1].

Proof. - Fix a potential ¢y in LZ. According to Lemma 3.4, there
exists an open necighborhood V' of gy in Lg where one can define a canonical
transformation U,(¢) : E,(qv) — H?[0,1], Un(q) being a real analytic
function on V' with range E, (q) such that U, (q) : E,(q) — En(q)is1-1
and onto. Clearly it suffices to prove that Gg,, (s, q) is real analytic. For
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qin V, G2n—1(+,q) can be expressed as a linear combination
Gan—1 (', Q) = an(Q)Un(q)fmz(" 00) + ﬂn(Q)Un(q)f2n—l (', 110)

where (an(q), Bn(q)) = (dn(q)2 + Bn(Q)2)1/2 (&n(‘J)’ Bn(Q)) and (dn,én) is
given by T,,(q)(0,1) where T,(q) is the inverse of the 2 x 2 matrix

( (Un(@) f2n(+10))(0)  (Un(g)fon—1(s,40))(0) )
(Un(@) fan(+20))'(0)  (Un(@)f2n-1(+20))'(0) )

Thus a,,(q) and B(q) are real analytic functions on V. This proves Lemma,
4.

Next we would like to prove the following

LEMMA 5. — Gg(s,q) is a weakly continuous function when
considered as a map from L% into H?[0,1] for all k > 1, i.e. if (pn)n>1
is a sequence in L%, with p, — p weakly then Gy (s, pn) — Gi(+, p) weakly
in H?[0,1].

Proof. — Fix k > 1. It suffices to prove that lixr(x) Gop—1(e,0n) =
n—
G2i-1(s,p) weakly in H?[0,1]. First, by a well known result, A\;(q) is a
compact function of g. Thus lin(l) Ak(pn) = Ae(p). This is used to prove
n-—
that (Gax—1(s, Pn))n>1 is a bounded sequence in H?[0, 1]. Thus there exists
a subsequence, again denoted by (G2x—1(s, Pn))n>1 Which converges weakly
in H?[0,1]. Therefore, lirr(l) Gap—1(eypn) = f in C[0,1]. In particular
n—
Nlfllz2 = 1, f(0) = 0 and f'(0) > 0. From section 3 we learn that
liII(l) Py(p,) = Pi(p) in the operator norm and thus f = Py(p)f, i.e.
f € Ey(p). This proves that f = Gar_1(+, p). But for every subsequence of
(G2k—1(e, Pn))n>1 We can argue as above and extract .another subsequence
which converges to Ga;—1. Thus 1in(1) Gat—1(e,Pn) = Gog—1(s,p) weakly in
n—

H?[0,1).

THEOREM 6. — (1) ®: L3 — M, q— (®,(q))n>1 is real analytic.

(2) For each n, ®, : L} — M, is compact, i.e. if p, — p weakly in L2,
then ®,,(p) :klim ®,,(pi) strongly in Mj.
ool

Proof. — (1) ® is locally bounded and thus it suffices to prove that
for any n, each coeflicient of ®,, is real analytic. Observe that Ao, + A2n—1
is real analytic, being a symmetric expression in Ay, and Ag,—;. The
analyticity of each of the coefficients of ®,, then follows from Lemma 4.
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(2) It is to show that each coefficient of ®; is a compact function on
L. Let (py)n>1 be a sequence in L2, weakly convergent to p € L3. Then
e.g.,

Jim (Gap—1(s, ), (—d2 + Pn — T0)Gar—1 (s, Pn))

= (Gak—1(+p), (=42 + p = 72)G2t-1(+, P))
where we used Lemma 5 and the fact that A, is compact.
The last results of this section concern asymptotic properties of the

®,’s and G,,’s.

q: Qon— logn ~
THEOREM 7. —_— @n(q) = (Zzn q22 1 ) +O(_g_) Where Qon
2n—-1 —q2n n
and @2,—1 denote the Fourier coefficients of q,

1
Qon = / q(z) cos 2rnzdz
0

and .
Pn-1 = / q(z) sin 2rnzdz.
0

The error estimates are uniform on bounded sets of potentials.

Proof. — Recall that ®,, can be written as
o = Aon — A2n—1 [c0s29, sin2¥,
" 2 sin2d, —cos2¥,

where I set ¥,, = 0 in the case the eigenvalues A2, is double. For n with
A2n—1 < Az2n, U, was defined such that 0 = Ga,—1(0) = sind, f2,(0) +
€n €08V, f2n—1(0). From Lemma 3.10

£i(0) = (=y2(1,2;)/A(N)))*/?

f2n—1 (0)2

and cos? ¥, =
f2n(0)2 + f2n-—1(0)2

for j = 2n — 1 or 2n. Thus sin? I, =

f2n(0)2
f2n(0)2 + f2n—1 (0)

5- By Corollary 3.9

A2n + A2p—1 — 2ﬂn (1 +O(10gn))

cos® 9, —sin?9,, =
" (/\217. - /\217.—1) n

Using Corollary 3.4 and 3.5 one obtains

)\- ,1-)\'11—— : 1 q:
—5—2——1c05219n = —(n — n2772)(1 + O( oi;n)) = Q2 + 0(—'loin).
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Next

|2sin d,, cos Y, | = 2\/(#71 = don—1)(2n = in) + 0(logn)
A2n — A2n—1 n

V4 B BB+ B + )

\/{Ign + agn—l

logn
+0(=7)

|‘I2n—1| +O(10gn).

V a%n + agn—l n

Thus it remains to determine the sign of sin 1, cos¥,,. Recall that
f:z.(o) = Un(?li(la ’\n)/A(/\n))l/2

with o, = sgn(—1)["/2*1(y,(1,X,,) — %5(1,A,))) and further that

sin A2, (1 —t)

1
y1(1, A2n) = cos /Ao + / cos / Aantq(t)dt + O(h_z)
0

\Y /\211
1 sin v Aot 1
y‘lz(la)"Zn) = Cos /\211 + o COS v/ A211(1 - t) : __’/\\/T'i—Q(t)dt + O(;z—)

Thus ,

Y1 (1’ ’\21i) - y2(17 /\211)

1
1

= \/%(—1)“+l /u sin 2nwtq(t)dt + ()(n—z).

Similarly

1 ! 1
Y1(1, Aonm1) —y2(1, Aan—y) = (=1)n+! / sin 2nwtq(t)dt+0(=).
0

vV /\211—1 p
Thus 03, = (=1)?"sgnb,,, 0o,_; = (=1)*""!sgnb, for n sufficiently large.
Next observe that

0< 511M/[f2n: f‘)n—l](o) = ‘/V[f‘)ny Enf‘ln—l](o)
= ‘/V[G'va G'Zn—l](o) = G‘Zn(())G‘,zn_] (0)

As G%,_,(0) > 0, this implies that G3,(0) > 0. Thus together with
0 < @, _,(0) =sind, f},(0) + &, cos ¥, f3,,_, (0)

it follows that cosd, > 0; from Gy,_;(0) > 0 we then obtain that

sin,, cos¥,, and b,, have the same sign and Theorem 7 is proved.
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The last results of this section concern asymptoti‘c properties of the
functions G,,.

PROPOSITION 8. — (1) Gan_i(z) = V2sinmna +0(%) and
hn—1(T) = V2rn cosmnz + O(1).

(2) Gan(z,q) = V2cosmnz + O(%) and
b (x,q) = —V2nmsin Tz + O(1).

Proof. — It is well known that E,(q) has an orthonormal basis

Hj,_, and H,, of the form Hy,_;(z) = V2sinnrz + O(%), H, _(z) =
1

V2nrcosnrz + O(1) and Han(z) = V2cosnmz + O(E)’ Hj (z) =

—V2nmsinnrz 4+ O(1). Thus, due to the normalization of Hy,_, and Ha,,

we have Gop—1 = Hon_1 + O(;ll—) and Go,, = Hap + 0(11—1) and the result
follows.

5. Derivative of ®.

In this section I compute the derivative of ® and study its asymptotic
behavior. It turns out that it is convenient to write ® in a slightly

different form. For ¢ in L3 denote its Fourier series by Y. Gz, cos2wnz +

n>1
Gan—15in27nz. Then § = (Gn)n>1 € ¢?(N) and I write ® as a map
¥ : (2(N) = ¢3(N) with (q) = (¥,(q))n>1 where

‘I’2n—l ((7) = (G2n7 (_di +q- 7"n)G2n—1>
and

l11217,(6\) = _(G2n—11 (_di +q-— Tn)G2n—l)-

To make notation easier, we write simply ¥(q) and ¥,(g). For illus-
tration let us start by computing the derivative of ¥ at ¢ = 0. For
¢ = 0, Gap—1(z) = V2sinmnz and Gay(z) = V2cosmnz and (—d2 +
q— Tn)G‘Zn—l = 0.

dq:O\Il‘Zn [P] = _<G2n—lypG‘2n—1) + (G2n—1aG2n-—l>dq=OTn[p]

1
= / p(z) cos 2rnzdr = Pay,.
0
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Similarly dg=o¥2n—1[p] = P2n-1- Thus dg—o¥ = Id. In particular dg=o ¥ is
1 —1 and onto.

To compute the derivative for general ¢ let me recall that
Gan \ _ [cosd, —sind, fon
(G2n—1) - ( sind, cosd, ) (Enf2n—l).
Thus &, fan—1 = — sin9,,G2n+c059,,G2n—1 and f3,+f2,_1 = G3,+G3,_;.

PROPOSITION 1.

! ng - G%n—l !
(1) dq¥2n[p] =/ _2__'17‘117‘2\1’211—1(‘1)/ dqGan-1[p|G2ndz
0 0
and
1 1
@ d¥an-alil= | GanGan1pdz +2820() [ dyGan-alpiGand.
0 0

Proof. — Write
(_di +q- Tn)G2n—1

Ao — Aop— Aoan — Aop—
= sin 1911_2_1)__22#.)(2” —epcosVy, %f?n—l
Ao — A2p— Aon — Aope
= -Ef—-ifl—’-(— 08 29,,)Gan_1 + sin 2q9n—2-"—-2-2—"—1c:2,,,.

To compute d,¥,[p| note that 2dgGan, G22) = dg(G2,,G2,) = 0 and
<qu2naG2n—-l) = —(qugn_l,ng). Thus

_dq\IJ'Zn[p] = 2<qu2n—1[p]a (—di +q- Tn)G‘zn—l)

1, .. .
+ (G'Zn—l’pG'Zn—l) - §(f22n + f‘zzn——lap)
= sin 2'011(/\211 - /\211—1)(qu‘2"2—1[1)]’ G'ZH‘)

_ (p’ G%n —Qng—l )

and (1) follows. Similarly one proves (2) :
dq(I)'Zn-—l [p] = (py G‘211‘G2n—1)
+ (>\2n - /\211——1 ) Ccos 21911(qu211—1 [1)]7 G-zn)-
This proves Proposition 1.

The derivates d,®,, and d,¥,,_; can be expressed in terms of f,,
and fy,,_; instead of Gy, and G5, _;. Observe that

2 2 2 2 "
G2n - G‘Zn—l = Cos 2"971(f2n - f2n,—1) — €, 8in 20,2 f2,, fan—1
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and f2 f2
G2nGan—1 = sin 2«92—2—u + 05 20,6 fan fon—1-

Thus we obtain

COROLLARY 2.

(lq\I")n.[p] — /1 fEn - f'gn_lpdx cos 29n
dq¥2u-1(p] 0 2 sin 29,

! ! —sin 29,
+ (En. / f'2nf2n— l]’dw + (A'Zn - /\211—1) / d(/G‘Zn—l []’]G‘Z'n,dx) ( ) .
0 0

cos 29,

To study the asymptotics of d,¥,, it will be useful to bring

1
/ dll G2 n—1 [P] G‘Z n d.’L‘
0

into another form. In section 3, I introduced unitary transformations
U.(p) : E,(q) — H?[0,1] with range in E,(p) for p in a ncighborhood
V7 of ¢ such that U, (p) is real analytic in p and satisfies U, (¢q) = P.(¢),
P, (¢)d,U, = 0 as well as dflUn[p] = (dl/Pn[p])Unr((I)- Define a(p) and B(p)
by

Gan—1 ('1 I)) = Oé(P)Un(P)Gzn(': (I) + ﬂ(p)Un.(p)GZH—I (‘a (1)~

LEMMA 3.

ol gl
i fon—1pda
/ quQH—l [[)]G-_)",d.ib‘ = Z & COS ﬂnf_](()) M
0

By /\2lz~l - /\j
JE2N 20 —1
1
f fj f-),,Pd.’L'
+sin?,, fi(0) ",
n ; J ) A‘)n _ )\]
J#E2n 20 —1

Proof. — Cleatly, a(p)? + B(p)* = 1 and (a(q), B(q)) = (0,1). a(p)
and B(p) are real analytic functions of p, thus

Pn((l)dI/GQH—I [])] = dqa[l)]Gzn(-, (1) + d([ﬁ[p]G;Zlm——l ('a (1)
It follows that le dyGop—1[plG2nda = d,alp]. Now
(o, 8) = (@ + 3*)7*(@&, )
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where (a, B) is determined by
0 = &P)U(P)Gan(+0))(0) + B) U (P)G2u-1(+,2))(0)
1= &(p)(U(P)Ganl+ ) (0) + BPNU(0)G2n-1(+, ) (0).

Observe that a(g) = 0 and B(q) = 1/G.,,,_,(0,¢) and thus the derivative
of the first equation above yields

{271—1 (01 (I)dqa[p] _((lqpn [1)]G2n— Q))(O)
Together with d,afp] = (1/G5,,_, (0, ¢))d,a[p] one obtains
dyaep] = ~(d, Pn [PIG2n-1(+,9))(0).
By Cauchy’s formula d,P,[p] = ~5- / dyR[p|(2)dz where T, is a circle
I,

in C including Ay, —; and Ay, and R(z) is the rosolvent,

R(z)=(-d2+q—1z)" Z,\ ~(fjr )i

j>0
As d,R[p] is given by R(z)pP 2), this leads to
PG = 5= 3 [ S U PRIGa )

Jj20

1 1
= ij(fj,pf'zn—l)en (:()50112-15[ dz

>0 ‘,, )\j — 2 A1 — 2

. 1 ——-—-———-1 1
+ Z Filfis pfan) sind, o /l Aj =2 A — Zdz.

J20

By Cauchy’s theorem, Lemma 3 then follows.

I will now study the asymptotics of d,¥,, as n — oo.

PROPOSITION 4.

(d, lI”u[I)] (Iqu’ZH 1[1)]

1 1
= (/ p(z) cos 27rn:1:(l;1:,/ p(x) sin 27rnzd:c) + ()(—1—)
0 0 n

where the error terms are bounded uniformly for bounded sets of potentials
q and p.

Proof. ( ) In section 4, T derived the following estimates :

' ’n (' 2n—1 ! 1
——————[)(l.l? = [ peos2made + O(=)
0 2 Jo n
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(@21
(1]
3

1 I
1
Gg,,Gg,,,_lp(l:L'=/ psin 27m:1:11;l:+()(;)
’ ,

JO

and from section 3, I recall

Aan — Azn—l —‘I/ ,_mnn lI|+() )

where the error terms are bounded uniformly for bounded sets of potentials
of ¢'s and of ps According to Proposition 1, it thus suffices to bound
(Aan — Aan—y) /u (l,,('z,,_l[p]("'z,,(ll appropiately. In view of Lemma 3 we

/ fifepd
need to estimate 0 —“————— for k€ {2n —1,2n
d to E A0 vy { b
P 2n—1
Ji ffl.l)’l'
| ¥ mb L)
,>0 J
PEIn 2 =1
) NIE 1 1/2
< ( § FiCO K S fanap)| ) ( ; m)
1FE2N 2n—1 J#E2IN 20—}
1 1/2
<sup 1F: o W Fomm i~ I ( ________) .
_sz_lp WFille~ M fan =l ~ N2l ; O A2
PE2N 2n—1
. l
It remains to prove that for & € {2n—1,2n} sup n® —_ iy
i { } n>1 ,zz" (A — ’\j)z
JE2N 20 -1

hounded uniformly for bounded sets of potentials. Thus it suffices to show
that for a given bounded set B of potentials there exist N > 1 and K > 0
such that

. 1
. 2
sup n E ZX;_:/\ ~-—)- <K

n>N ISN
1#n

and

y 1 .
sup n* Z o7 M) < h

n>N )>N 2
1#En
for k€ {2n — 1,20} and ¢ in B. L.g. let us consider

2
sup n E -
“ /\., /\2,,

n>N
1#En

Choose N > 1 such that for ¢ € B
(a) Azyy Azt 21 (02 N) and
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1 1
(b) |V/\2n-n SZ, |V/\2n—1_n|SZ(nZN)

Then

2 1 < 1 n? .
" jZTZH'l (A2 = Aza)? = jzfzz;rl (VA2 = Vi2m)® (V25 +VAzm)®
Further
n? /(X2 + V)
and
/(V22 = V) <1/(G —=n=1/2)* (j,n > N).
Thus

Z "2/(’\‘21' - /\211)2 <2 Z 1/(¢- 1/2)2

j2n+1 21
foralln > N, qin B. Similarly,

n—1 2

n Z (AZJ—AM)) Z (J—n+1/2)2 (V2 + Vo)
<23 =

21

These estimates prove Proposition 4.

For the last result of this section, I first need to introduce some
more notation. Let ¢ be in Ly and define J := {n > 1: Aap—1 < A2n}-
Observe that for n € J, fa, = c0s9,,Gapn + sind,Ga,—1 and €, fon—1 =
—sin 9,G2y, + cos 9, G2y —1. These relations remain true for n ¢ J if we set
¥, =0and e, =+1forn ¢ J. Then for alln > 1

(f';n - fgn—l)/2 = COs 2"971 (ng Zn l)/2 + sin 29 GZHGZ" 1

and
Enf2n.f'2n—1 = —sin 27911 (G%n 2n 1)/2 + cos 29 G2nG2n 1-
Now introduce
o fgn - f‘?n,—l . \/—
an = —-—\/..2—— (n > 1) and F2n_1 = 2€nf2nf2n_1 for n ¢ J
as well as

F2n—l = \/5()\27; - /\21z—l)dq"9n for n € J’

where, by slight abuse of notation (cf. Remark after Lemma 6.8), we define

1 1
Enf'2nf‘2n—l +/ qu‘Zn—l[']G‘an-T-
0

dd, = ———
o /\271 - /\211—1
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Further introduce the orthonormal trigonometric basis (T’,)n>1 of L%,
To,(z) := cos 29,,V2 cos 2rnz + sin 29,,V2sin 2rnz

and
Ton_1(z) := — sin 29,,v/2 cos 27nz + cos 29,V2sin 2rnz.

From the asymptotics for
1
Gan(z) = V2cos2nmz + 0(7—1) and Gan_1(x) = V2sin 2n7z + O(i—)

derived in section 4, the following result is then immediate :

PROPOSITION 5. —  (F,)n>1 and (Tn)n>1 are quadratically close,
ie Y ||Fn - Tnllig < o0.
n>1

‘6. Local properties of ®.

In this section I prove that d,® is a linear isomorphism for any ¢ in
L2. Iinclude a proof for finite band potentials, i.e. potentials ¢ in L with
J:={n >1:A2,-1 < A2, } finite, as the proof simplifies in that case.

THEOREM 1. — d4® is1—1 and onto.

First I need to derive a few auxiliary results. Recall that the set Isogq
of isospectral potentials is a countable intersection of manifolds. So one can
define the normal space IV, and tangent space T, of Isoq at ¢.

Aw)

.. dd .
LEMMA 2. — Let p, denote the potential HW with p =

”11((])- Then
() fy (f3 — f3_1)pudz =0 Vn€J, V21
2) [} forfor-1Pads =0 Vne J, Vk ¢ J.

Proof. — (1) and (2) are proved in a similar way. I show that
forj >0n € J,2 fol fZpndz = 0. One might assume that ¢ satisfies
A2n—1(q) < pa(g) < A2,(q) as the general case follows by continuity (in g).
Then with g = p,(q),

o = (LW @)
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where fi(z,p) = yi(z,p) + [%(lij%’i’]w(w) with my(p) =
é—(ﬁ-)- + % A(p)? — 4 (cf. [FIT]). Then fi(z + 1,p) = myfi(x,pn) and
mym_ = 1. Thus

r. ! d d ..
2 / Fpudz = (1, ) /0 (2o fef- = (LI faf-)da
2(1, L'd
= BB L OV1f5 £ WL, £ = 0

where we used that A; — p # 0. The last equality follows from

W £ (1), F+(D)]W[£;(1), F-(1)]
= mym_W[£;(0), £+(0)]W [£;(0), £~ (0)].

1
LEMMA 3. — / f,'f% f2dx =0 for k = n and all k with A\, # \,,.
0

1 1
Proof. — 2/ f,fdii:;f,'fdx = 2/ S faW Sk, fu]dz where W[f,g]
0 0
denotes the Wronskian. As %W[fk, fal = (M = Ay)fefa we obtain

1
2(A — /\,,,)/ f,f% 2dx = 0 by the periodicity of f; and f,,. The case
(
n=Kkis trivi;&l.

ro . d . .
COROLLARY 4. — / (f2, —f.fk_,)Tm(f.j(—f.jﬂ_l) =0 (all k,¢).
0
Denote by J the set {n >1: Ay, < Az, }. Then
LEMMA 5.

1
(. .
(1) Fork @ Jyn 2 Vwithn # &, [ fofoics 7 (= Fiumi ) = 0.
(2) Fork ¢ J,

! d . .
A far far—1 d—x(fzz"’ = f3—1)dz
'l

- _(/0' yf(JT,Azkz)) -1/2(/0 yg(I’A2k))—1/2

where y, and y, denote, as usual, the fundamental solutions.
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Proof. — (1) and (2) are proved in a very similar way, thus we
concentrate on (2) only, which follows from the following statement

1 d . 1
[ 0 raste, o) 2@ e =17 [ e dan)de
0 0
(1<5<2).
To make notation easier, choose j = 1. Then

1
d

/ y1(z, A2k )y2(x, Agn) d—yf(xy Aop)dz
0 I

1
o d o
= Jim | @ mu( e (@ dw)de.

For 4 # X := A9, we have, by a similar argument as in the proof of
Lemma 2,

1
d
2(p - /\)/0 yl(z,u)yz(m,#)ﬂyf(w,/\)dw =31 (1, p)ya(1, p).
Clearly,
yi(lp) _d

‘{i_{rg\yé(lvu)=l and :mﬁ—alunyi(l,ﬂ)-

Thus

d

=-3 / 1 HEDY)
- 2 o yl 9 .
Thus Lemma 4 follows.

Denote by T; translation by ¢, i.e. Ty f(z) := f(z +t). Then

N =

1
. d 2 —_
,EL“& /0 yl(x,u)ya(m,u)ayl (z, A)dz =

LEMMA 6. — (1) T; leaves Iso, invariant.

(2) Given q € L2 there exists a countable set A C [0,1] such that for
n € J and all t in [0,1] \ A, A2n-1(q) < £n(Tiq) < A2n(9).

Proof. — (1) is immediate by applying T; to the equation —y" +qy =
Ay.

(2) It is well known that fs,(z,q) and forn—1(x,q) have precisely n
zeroes in 0 < z < 1. Observe that f,(z,q) = £f,(0,Tq) for all n > 0
with Aop—1 # A2, Thus the claim follows by observirig that for n € J and
J € {2n—1,2n}, £;(0,T,q) =0 if and only if A;(q) = p,(T2q).
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LEMMA 7. — (1) There exists 0 < t < 1 such that for any finite
subset J' C J, the matrix

1 d . ;
(/j E(‘f?z" - f‘lzn—l)(x)gz(x - t’ th)d.’B)

is non-singular where (gy) k>1 denotes the L* normalized system of Dirichlet
eigenfunctions, defined in the introduction.

n,keJ’

(2) Any finite collection of (f3, — f3,_1)n>1, (fonSf2n—1)ngJ-

= (£3, = f3n=1) ey i linearly independent.

Proof. — In view of Lemma 5 and Corollary 4, to show (2), it
suffices to prove that any finite collection of (%( 2 - f.;)n_l))n ey 18

linearly independent. By Lemma 6, I may assume that ¢ has the property
that A2,-1(¢) < pa(q) < Aan(q) for all n in J. (1) and (2) then follow,

once I have shown that for any finite subset J' C J, det ( / 9i— Iz (f3n =

fPao1)dz) imes # 0. To prove it observe that
1
2(ps = An) / 9i —-f2 / 2(p = An) gk faW gk, fuldz

= Wlge, Ful?|, = Fu(0 (611)" - 64(0)?).
Thus

od .
2/0 (l/:.dj(fzdn _f‘§71~1)d1
2n(0)2 . 2
:(gk(1)2_gk(0)2)(f211(0) 3 fon—1(0) )

e = Aan ik — Aan—1
Observe that as A1 < pr < A2k, 9r(1) # £g;.(0) and thus g},(1)% —
g;‘:(O)z # 0. Moreover, again as Aap—; < fn < A, it follows that
2,(0)% # 0 and f2,,_1(0)? # 0. It remains to show that
4 = det ( _ flzn(o) + ffn—l(o) )
Hi — A2n MK — A2n—1/ knes’
First, as the determinant is multilinear,

A= Z( 1)" H fz,,(o) H f217, I(O)det( j—(lf )k,1lEJ'

=T, =2y —Ty=A2n—1
where © = (21 )pes with —zy € {Aop—1, A2} and where € = (;)peyr with

g; =0if 4 = Aap—1 and ; = 1 if 2}, = Agy. Moreover |e| = 3 ¢4. By an
keJ’
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introduction argument (cf. [PS], p. 98)

H(lh wi) (@ — x)

det (———
(un +a:k)"””'€*’ IT (s +=)
J,ked’
Now observe that H (j — px) > 0 and that sgn J] (z; — ) is
i>k >k

independent of z. Moreover
sen ] (un+a)=(=Dlsgn J] (#n = Azkr)-
n,k€J’ n,keJ’
This last equality is verified by observing that given z = (z},) and y = (ys)
with z;, = Y for k ?S n and {xn7 Jn} = {/\211 1,/\211} Sgn(ll‘j + yk) =
sgn(yu; + x1) except when j = k = n; in that case py, + yn = —(pn + xn).
This proves Lemma 7.

Recall that for n € J the angular coordinate ¥,, was introduced in
section 4 by G2,—1(z) = sind, fon(x) + €, c0s Iy, for—1(z) and Gap(z) =
cosVy, fon(z) — €5 sin Yy, fon—1(x). First I derive an expression for the direc-
tional derivative d,9,[p] when p is in the tangent space Tj,.

LEMMA 8. — Forp € T, and n € J with Az,—1(g) < pn(q) <
/\'_)n.(q) 1
dqﬂn[p] = _'G‘Zn(o)_len. Cos ﬁn.f‘)n—l(o)

1
Z/ N _/\Zn l_ﬂj_/\Qn).

321

Proof. — By definition G2,—;(0) = 0 and thus
G2n(0)dgV,[p] = sin ¥,dg f2n(0)[p] + cos ¥nendg fon—1(0)[p]-
Further, as A2;,—1 < A2y, one has for k € {2n — 1,2n}
2(1, Ak (1, A
_yZ.( 3 k)yl(x,Ak)+0' y]( L) .
A(Ak) A(Ar)
where the sign o of the last radical is given by
sgn(- 1)1+ (g1 (1, M) — (1, ).
Observe that (—1)*' A(Ag) > 0, (—=1)*A(Ase_s) > 0 and =2212) 5 ¢

Al) T
./1(1 k)

as well as ————= AOw) > 0. Next it is well known (cf. [PT]) that y2(1,]) is
k
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. i— A 2(1,A) .
given by y2(1, ) =H 1?27‘_2 . Thus dqy2(1,A) =Z -@gﬁ Due to

it Caxt A
the assumption that p € T, one has dy\i[p] = dgA(Ai)[p] = 0 and thus

1
40 u(0) = 3 7u(0) 32 — /ngjpdx.

jz1 T A

The Lemma now follows by observing that

0 = sin 1911f211(0) + &, cos ﬂnf2n—l(0)'

Remark. — For potentials ¢ € L3 with Ay—; < ftn < A2, One can
choose Y,,(q) to depend analytically on the potential in a sufficiently small
neighborhood of g. Then

()\211 - )\271—1)dq19n[p]

1 1
= En/ f‘)nf‘zn—lpdx + (/\211 - /\211—-1)/ qu‘)n—l[p]G‘anl'-
0 0

By a slight abuse of notation, we denote the right hand side of the equality
above by (Azn — A2n—1)dy0,[p] even if p,,(q) € {A2n—1,A2,}.

Recall that I have introduced the potentials

_ d oA
pn(w) - wa)l)‘:“"(g)'

LEMMA 9. — Let J' C J be finite with the property that
Aon—1(q) < pn(q) < A2n(q) Vn € J'. Then

det(dq "91.- [pn] )k,nEJ' 75 0.

Proof. — Using Wronskians one verifies that

1
. 1
/ g;pndx = 6]'715('.’/1(17“11) - y;(laﬂn))
0

(cf. [MT], p. 164) where §,, denotes the Kronecker delta function. Thus, by
Lemma 8,

Cor(O)dyDult] = gex cos D fou 1 (0) (a1 ) = Y4 (1, )

Hn — /\'Zk—l Hn — /\2k '
Clearly, as for all k € J',

A2k-1(q) < pr(g) < Aar(q),
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W1 (L ) — 95(1L, p0))? = A2 (i) =4 #0
and
cos Uy far—1(0) # 0.
1 1

] \Hn = A2k—1  fn — Azk)n,ke.l'
is shown by the same method as in the proof of Lemma 7.

Thus it suffices to prove that det ( # 0. This

LEMMA 10. — Letn € J with p,(q) € {A20n-1(q),A2n(q)}. Then
dyVi[pn] = Sgnen with ¢, # 0.

Proof. — Clearly A(un)? —4 = 0. Thus

1
1
I/ gipude| = 6u5v/A2(pa) =4 =0,
0

and by Lemma 8 dy9;[p,] = 0 for k # n. It remains to show that ¢, # 0.

To make notation easier, let me assume that p, = As,,—1. Define a sequence

g¢; € Isoq such that ¢ = lim g; in L2 and for all j, Aan—1 < pn(g;) < A2n-
J—00

(E.g. gj(z) := ¢g(x +t;) will do for an appropriate sequence t; with ¢; | 0).

d 0A(N)

Define pjn(z) := dr dalz) dq(z) l/\=u...(q,’)

1 1
dqﬂ?" [p] = §G2n(0)—15n COSﬂann—l(O)'é((‘/l(la Un) — yé(l» Hn))

. From Lemma 8 we then obtain

1 1
(lln = A2n—1 - Hn — /\211)

where the right hand side is evaluated at g;. Clearly
Jim fyi (1, ) = 92(1, o)l = lim V/A(un)? —4 =0
and lim G2,(0,¢;) = G2.(0,q) # 0 as well as lim cosV,(g;) = 1. It
j—o00 j—oo
remains to compute

. \/A n 1, Aon—
jl_l*ﬂ;ofzn—l(o-—-ﬂl— ]—400\/ ya( 2 1)

Hn A2n—1 A()\Qn 1) Hn — A2n-1

A%(pn) — 4
Hn — A2n—l '

Clearly

y2(L,Adgn—1) _ 1 H (q5) — A2n—1
M — Azn—1 n2n? k2n?
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converges to

1 pe(g) = Azn—1 ]
n2n2 H k2n2 = _alx\=u,.(q)y2(1’/\) #0.
k#n

On the other hand
2 — .
tim 22 Ay —1ra 0
J—00 g — A2n—1
and it follows that c¢,, # 0. This proves Lemma 10.

Proof of Theorem 1 for a finite band potential. — As d,® is a
Fredholm operator of index 0 (cf. Proposition 5.5), it suffices to prove that
dy® is 1 — 1. Assume that for some p € L3, d,®[p] = 0. It is to show
that p = 0. From Proposition 5.2 one learns that fol F,pdz = 0 for all
n > 1 where Fy, := (fé)n - f22n—1)/\/§y Fopq = \/ienf2nf2n—1 ('I’L ¢ J)
and Fy,_1 = v2(An — A2n—1)dq¥,, (n € J). Clearly it suffices to show
that (F,,)»>1 is a basis of L2. From Corollary 5.5 we learn that (Fn)n>1
is quadratically close to an orthonormal basis. Thus according to a result
of Bari (cf. [GK], p. 317) it suffices to show that (F,),>1 is w-linearly
independent, i.e. if (@, ),>1 is a sequence in R such that

(i) Y @?||Full? < o0 and (ii)) Y. a,F, = 0, then a,, = 0 for all

n>1 n>1
n > 1. First observe that (Fon)n>1 and (Fan—1)ngJ are all in the normal
space Ng. As p,, € T,, this implies

0= Zak(Fk,pn) = Za2k—1(sz—1,P1z)
k>1 ked

where (f,g) denotes the inner product fol fgdz in L?. Now

(Fak—1,Pn)k,ned
is a finite matrix as ¢ is a finite band potential and is regular according to
Lemmas 9 and 10. Thus ay—; =0 for all k € J. For n ¢ J, define
d d
T2n = E;(f2nf2n—l) and 7T2p—; = (E(fgn - fgn—l)'

According to Lemma 5, (For,725) = c2nbni with ¢o, # 0 and k > 1 and
(F2p—1,72,) = 0 for all k ¢ J. Thus

0= aa(Fok,720) + D 02k-1(Fok—1,720) = Q2nCan
k>1 kg

and thus ay, = 0 for n ¢ J. Similarly, for all k > 1, (F,72,—1) = 0 and
(Faop—1,T2n—1) = Con—16ni With ¢2,—1 # 0, again according to Lemma 5.
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This implies that azp,—1 = 0 for n ¢ J, and thus Y az,F2, = 0. By
neJ
Lemma 7, az, =0Vn € J.

Proof of Theorem 1 for a general potential. — As in the proof for
the case where ¢ is a finite band potential it suffices to show that (F,)n>1
is w-linearly independent. Let (a,),>1 be a sequence of real numbers such

that > a2||F,||> < oo and ). a,F, = 0. It is to prove that a,, = 0
n>1 n>1

Vn > 1. Introduce Jii={n 2 1: A1 < pn < Az} Again, (Fap)n>1
and (Fy,_1)n¢s are elements of the normal space N, and the potentials

(a) It follows from Lemma 10, that az,—3y =0forn € J\ J;.

(b) Next I want to prove that ae,—1 = 0 for n € J;. For that purpose
define Ak = dgVi[4nmp,] for k,n € Jy. According to Lemma 8, Ay is
given by
An,k = sz(O)_l€k COSﬂkf‘Zl.:—l(O)nﬂ'(yl(laun) - y;(lal‘n))

A2 = Ag—1
(/—l'n - ’\2k—l)(/\2k - /1‘1z)
Define B, := Ani — Annbur and Chy, 1= Appbni.
LEMMA 11.

(1) B: C3(J)) = (D), @ken = (X B,,kxk)1l€Jl is a linear
ke,

operator of trace class.

(2) C : 2(Jy) — (), (@r)res, — (AunTn)nes, is a bounded
invertible linear operator with a bounded inverse.

Proof. — First let us consider the asymptotics : Ga(0)™! =
1

E + O(%) Further Iyl(l,l‘n) - yé(lil—tn)l =V A(un)2 —4 and thus by

Lemma 3.8

logn
nrlys (1, ) = %5(L, o)l = Oz = fn)V/ln = Azact (1 4+ O(222)).

Further as cos? 9y, = fax(0)%/(fox—1(0)2+ f2x(0)?) and £;(0)* = —%
Corollary 3.9 implies that !

cos Uy, far—1(0)( A2k — A2g—1)

= V2 A2k — e v/ — Azk—1 (1 +O(%))'
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To prove (1) it suffices to show that

1

< 00.

,; I/l'u - /\ZA:—I ”/Lu - /\2k—l|
konedy

This follows immediately from the asymptotics |, —Aj| = 72|n?—k?|4+0(1)

for j € {2k —1,2k}. (2) follows immediately from the fact that A,,, 75 0 for

logn
all n € J; and from the asymptotics derived above : [4,,,] =1+ ()( g )

Back to the proof of (b), it follows from Lemma 11 that C~ ]A =
Id+C~' B is a bounded operator of determinant class, i.e. has a Fredholm
determinant det(C~'A). To prove (b) it suffices to show that C~1Ais 1 -1
or, equivalently, that det C~'A # 0. The Fredholm determinant det C—! A
is a limit of determinants of finite matrices, i.e. det C™'A = lim(C~1A4)
where (C~'4) ;s denotes the J' x J' matrix (C~'A)y nes with J' C J;
finite. As C~! is diagonal, det(C~'A); = det Ay /det Cy. Thus

1 1
det Ay /det Cyp =det ( - )
/ Hn — ’\2k 1 Hn — /\‘Zk n,keJ’

1
/ H (/’n /\Zn 1 /\211 - Il'n).

neJ’

As in the proof of Lemma 7, one writes

1 t( 1 1 )
ae -
Hn — A2k-1 P — Ao/ ked’

_Z ~det (E+“)“ keJ’

| | ok I (0 — .“I») H (Ln - z1)
Z HI. (e +517k)

where @ = (ag)pesr with —ap € {Aop—y,Aor} and € = (&4 )peysr with e, =0

if —wp = Mgy and € = 1if —ay, = Ay Finally |e| = 3 €. Then
keJ’

1 1
det -
(/"n = A2k—1 Hn _/\ZI-)”/‘GJ'

:vk+uk)( a:k+uk)
= E II II II 1- 1- .
( I/Ln +J3u|) ( B + T Ty + Kk

T neJd’ neJ' k>n

Now observe that for n + 1 <k,

(1 I +5UI.:)(1 I +~'17I.:) _q - (e ) (e + )
iy + X Ty + fl (/ln + xp) (2, + Jir)
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is always strictly positive and that there exists K' > 0 such that
ITI» + Uk“/l'n + mnl K’
Il"n + fl‘k“@n + .ukl ( - ’lz)z

Then
Ifl:l» + Nl»“/tu + T?II »/
g k;_l |ten + zk || + /l,kl - Z (2n)? g 2
Choose N such that K < 1 forallk >n+1> N+ 1. Usi
s = n?)'z <5 a >n > . Using

that log(1 +¢) > log(1 — [t]) > —1 for |t| < 1/2 one deduces that there
cxists a constant K > 0, independent of J' C J; and 2 = (2 )res, with
—at € {A2k—1, A2k } such that

0< K< H H (1 _ ek + pellen + /lnl)

[fn + Ti||20 + pu|

n2N41 k>u+41
neJ! ke J!

o<k< [ II (1_ |-’E/.-+ltk||wn_+ﬂn|)

[t + zi] |0 + pa|

1<n<N k>N+1
nelt! rea!

and
o<x< [I 1I (1 _ (@ ) (@ + u.,,,))'
1<n<N u+1<k<N (pn + g )@y + pg)
netJ’ rea!

Thus, for all J' C J; finite

Cc
1 1
det ( - ) K3
M — Aog I — Aok n,kEJ‘ - Z H l/l,” + x|

T nelJ'

But .
detCy = —,
; ,,1;‘!, [en + T

Thus I have shown that det(C~'A4),; > K? independent of J' C J;. This
implics that det C~'A > K2 > 0 and (b) follows.

(¢) As in the proof of Theorem 1 for finite band potentials one shows
that oy, = azy—; =0foralln ¢ J.

(d) It remains to show that «y, = 0 for n € J. By Lemma 6 I
may assume that Aoy < p, < Ay, for all n € J, as the property of
(f3,— f2,_1)nes being w-linearly independent is invariant under translation
of the potential. The argument is similar to the one of (b). I introduce for
n,keJ=J
Ank = _:‘]2(1aﬂn)(/\2n )\211 1)/\/(/\211 ﬂn) Hn — A2n— l)

A(h(f“‘ fgk-l)flf,dw.
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As in the proof of Lemma 7, A,; can be computed, using Wronskian
identities, to give
971(1)2 - gn(0)2
((/\2" Aan- l)/2) ?/2 1 M) \/7/\211 Il'n)(p'n A?n—l)
(_ f2r(0)? f2k 1(0)? )
Py — /\2h = Aon—1
I define B,y := A, — Aprbnr and Cuyp := Apibnk.

LEMMA 12. — (1) B : 2(J) - (J), (@)res = ( IEJ

Bnkwl.:)_HEJ

(2) C: 3(J) = 2(J), (zk)res = (AnnTn)ney is a bounded invertible
lincar operator with a bounded inverse.

is a linear operator of trace class.

Proof. — First let us consider the asymptotics. Recall that f;(0)? =
—y2(1, A;)A(A;); thus Corollary 3.9 implies that

|Aj = pn logn
£i(0)* = m(l"‘o( —))

for j € {2n — 1,2n}. Moreover,

?/(11 /1’11)2 =1
= 0O = NP
* Hn

But [ly2(e, wn)lI> = 92(1, #a)y5(1, i) (cf. eg. [PT], p.30) and, by the
Wronskian identity 1 = y; (1, uy,)y5(1, #), one deduces that

|.7)2(17/~"n)(.‘/:1(1)2 - 951(0)2)1 = |y1(1, pa) = y‘lz(lsl-‘n)l = VA2 (un) — 4.
By Lemma 3.8,

\/A2(ll'1z) —4= \/(’\‘211 Mn)(pn — ’\2"—1)(1 + O(lo’lgln))

Thus

. ] 2 _ 2
[92(L, 10 ) (90 (1)* — gn(0)*)] _ 1+0(10gn).
\[/\211 ﬂn) ﬂ'n /\211—1) n

Next

Y)Y ()

Hn — )\‘ZL Hn — A2k—1
_ ( A2k — [k 1 I A2k—1 1 )
A2k = A2k=1)/2 A2k — pn (A2k — A2k=1)/2 pn — A2k-1

(1+0(ED)).
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To prove (1) it thus suffices to show that
Z (/\211 = An—1 | Aan = A2n—1
0\ Dok = pal 0 Aek-1 = pial

k.n€J

) < oo

Observe that ,
I’\2k—1 - an, l)\2k — Un| = 71’2|k2 - n2| + O(1).
Thus

Aon — A1 1,7/12
Z Z ( —n)(k+n) E(Azn—)\m—l)(;)

n>1k>n+1
Z 1 ( 1 )5/12
e (k=n)‘k+n

By Holder’s inequality for p = 3/2 and p' = 3 one obtains

Z kin(kin)s/mz( Z (kin)p)l/p

k>n+1 k>n+1
1 / 1/p'
k>n+1 n

- A2n = A2n—1
Similarly one shows that Z Z RRACLLA Lt
n>1k<n—1 (n k)(k + )

(2) follows from the fact that A,, # 0 for all n € J and the
(logn)
)

< oo. This proves (1).

asymptotics |A,,| =1+ 0

Back to the proof of (d), it follows from Lemma 12 that C7!A =
Id+C~1'B is a bounded operator of determinant class. By the same
argument as in (b) it suffices to prove that det C~14 # 0. But det C~1A4 =
limdet A/ det C;» where A denotes the J' x J' matrix (Ank)n,kesr with
J' C J finite and where C is defined similarly.

Thus det A/ det C: is given by

f21(0)? fak—1(0)?

det | — +

( Hn — A2k Hn — A2/»‘—1 )n,kEJ'

f2n(0)2 f2n— (0)
/nlg,, ( = A2n = A2n-1 )
As in the proof of Lemma 7, one writes
det ( _ (00 ka 1(0)? )
Bn — /\21. — A2p—1/ kel

-Xe i T #mo I fna@det (——)

—Zp=Aak —TE=A2k—1 Hn + T
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where z = (z1)reyr and € = (€1 )resr are defined as in Lemma, 7. Similarly

H f2n(0)2 f‘2n—1(0)2 )
/\2n Kn — /\2n—l

neJ'
1

= 0 .—1(0 —_—

zz:_z'g:/\% Jar( )_ug%_lfzk 1( )];]: ot o]

Arguing as in the proof of (b) we see that
detAJ:/detCJr = (ZRI . S""')/ZRI

where )
R, = l__[ f2:(0) 1:[ Fa1(0) ] T o]
—T) =2k —Tp=Aa2p n
and where

=TI (- 255 (- 2550

n€J' k>n Tn + i
Observe that for all z, R; > 0 and that from the proof of (b), S, > K3
where K does not depend on (x4 )res and J' C J. Thusdet Ay /det Cyr >

K3 >0forall J/CJordetC~!A > K3 > 0. Now (d) follows and the
proof of Theorem 1 is finished.

7. Global properties of ®.

In this section I show
THEOREM 1. — @ is1—1 and onto.
As an immediate consequence we obtain, by applying Theorem 6.1

THEOREM 2. — & and its inverse are real analytic isomorphisms.

Proof (of Theorem 1). — Denote by E the subspace of all potentials
q in L3 with g(z) = ¢(1 — z). From [GT1] together with Proposition 4.3
follows that ®|g is 1 — 1 and ®(E) = {R = (Rp)a>1 € M : R, diagonal
Vn > 1}. Further it is well known that for all ¢ € L2, IsogNE # @
(cf. e.g. [GT2]). In view of Proposition 4.2 it then suffices to prove that
®lis04 is 1 — 1 and that ®(Isogq) = Iso ®(g). Using that Isop is compact,
I show that ®|is04 is 1 — 1 as follows (cf. [GT2] for a similar argument) :
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Let K be the set of points in Isoq such that ®(q) has more than one
preimage. As ® is a local homeomorphism, K is open in Isog. K contains
no even potentials and K # Isoq, as E NIsoq # 0. Further K is closed.
Indeed assume there exists a sequence (g;);>1 in K. Then there exists
a convergent subsequence, again denoted by (g;);>1, and a convergent
sequence (p;);j>1 in Isoq such that ®(g;) = ®(p;), but ¢; # p; Vj > 1.
Then Jl_l}g q; ;éjl_igxo p; as ® is a local homeomorphism. Thus K is open
and closed and properly contained in Isog, hence empty. To prove that
®(Isog) = Iso®(g) observe that both Isog and Iso ®(g) are connected
tori of the same, generically infinite, genus. If ¢ has the property that

:={n >1:Ap-1(g9) < A2n(g)} is finite, then both Isog and Iso ®(g) are
of finite genus and thus ®(Isoq) = Iso ®(q). To prove ®(Isoq) = Iso ®(q)
for arbitrary g, let R = (Ri)r>1 € Iso®(g) and assume without loss of
generality that 11,(¢) = A2n—1(g) Vn > 1. I have to show that R € ®(Isoq).
Define a sequence (R\));>; in M as follows : Rfc’) =R forl1 <k<jand
R;_,j) =0fork > j+1.Then lim RY) = Rin M. Define g; to be the unique

j—oo
even potential with Agx—1(q) = pi(g;) = A2k—1(g;) and Axi(q) = Agk(qj)
for 1 < k < j and Agp—1(g;) = A2r(g;) for k > j+1. Then &(g;) € Iso(RY))
and lim ®(g;) = ®(¢) in M. As ®|g : E — {S € M : S; diagonal Vk} is a
j—oo
homeomorphism, one concludes that lim g; = g in L. Define p; € Isog; to
j—oo
be the unique potential with ®(p;) = R). Then ||g;||z2 = ||p;|l.> and thus
there exists a subsequence, again denoted by p; which is weakly convergent
to p € L2. Clearly &,(p) = lim &,(p;) = lim RY) = R, for alln > 1, as
j—o0 j—+00

®,, is compact. This proves that ®(p) = R.

Denote by Hg the Sobolev space {f € Hp,, : fol f(z)dz = 0}. Clearly

H)*' C HY C HY = L3. 1t is a well known result that ¢ € HE if and only
if ¢ € L and (A2x — A2x—1)k>1 € £2. From the representation
Aog — Aap—y [ €0s20)  sin2Uy
()= —F5—1 .
2 sin 209, — cos 2V,
one deduces from Theorem 2 the following

COROLLARY 3. — & : H}' - M™" is a real analytic, 1 — 1 and
onto where

M™ = {(Ri)i>1 € M : (Ri)i>1 € 2}

Remark. — 1t is very likely that ® : H}' — M™" is bianalytic for all
n. However I have not verified this statement.
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As the last result in this section I want to discuss the S! action on
Iso g generated by translations.

THEOREM 4. — Letq € H}. Then for alln > 1 with Aan—1 < Agn,
there exists a continuouly differentiable function ¢, : R — R such that

A2n = Azn—1 (coszsan(t) sin 20, (t) )

@, (Tig) =
n(Teq) D) sin2p,,(t) — cos 2pn(t)

Moreover the winding number (2¢,(1) — 2¢,(0))/2r is equal to n.

Proof. — Observe that for n > 1 with Aan_y < A2, fu(z,Tiq) =
*fi(z +t,q) for k € {2n — 1,2n}. Instead of expressing Gon—1(z, T;q) and
Gan(z,Tiq) in terms of fon—1(x,Tiq) and fon(z,Tiq) I use fon—1(x +1t,q)
and fon(z+t, ¢). It was proved in section 3, that W[ fan—1(z, q), fon(z,q)] #
0 for all z. Denote the zeroes of f2,—1(z,q) and fon(z,q) by0 <y <--- <
yn < land 0 < 2; < --- < 2z, < 1 respectively. These zeroes interlace.
To make notation easier I assume that 0 = y; < 23 < - <y, < 2z, < L.
Recall that by the definition of fi’s, f3,_1(0) > 0 and f,(0) > 0. It follows
that there exists a continuously differentiable function ¢, (t) such that

G'Zn—l(x’ th) = Cos (pn(t)f2n—l(x +t, q) —sin ‘pn(t)fi.’n(z +t, Q)
Gan(z,Tiq) = sin @, (t) fon—1(x + t,q) + cos @, (t) fon(z + ¢, q).

Taking the derivative of the first equation with respect to ¢t at z = 0 leads
to, using that q is in H},

d d
0= _E‘pn(t)G%z(O’ TtQ) + Ela‘:OG?n—l(:r, TtQ)
By definition G5, _,(0,T;q) > 0 for all ¢. Further, by a simple verification,

G2,(0,T;q) > 0 for all ¢t. This implies Edchn(t) > 0 Vt. Moreover ¢,(1) —

©n(0) = 7k for some k > 1. As fa,,—1(z,q) has precisely n zeroes in [0,1),
it follows that ¢, (1) — ¢, (0) = 7n.
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