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ON THE STRUCTURE OF BRIESKORN LATTICE

by Morihiko SAITO

Introduction.

Let f : C™*!,0 = C,0 be a holomorphic function with an isolated
singularity (n > 1), and f : X — S a good represent of f, called the
Milnor fibration of f, i.e. X is the intersection of a sufficiently small ball
in C"*! with the pull-back by f of a much smaller disc S in C. Then the

filtered Gauss-Manin system / (Ox, F) is defined to be the filtered direct
f
image, cf. §2, and we have the natural isomorphism

(*) FLo M = Q33 /df A dO%,
0 .

where M : = ( / Ox) (the stalk at 0) and F on M is induced by
f 0

the filtration F' on / Ox. The right hand side of (*) was first studied
f

by Brieskorn [B] and we call it the Brieskorn lattice of M, and denote
it by My. In fact, he defined the regular singular connection (called the
Gauss-Manin connection) on Mj, which calculates the Milnor monodromy.
We can easily verify that the connection V is compatible with the action
of §; on M as left Dgg-module, where t is the coordinate of S. More
precisely, the inverse of the action of Vj,5;(resp.0;) is well-defined as
a C-endomorphism of My(resp.M) and they coincide on F_,M by the
isomorphism (¥*)

Key-words : Gauss-Manin system — Microlocalization — Mixed Hodge structure
— Vanishing cycle — b-function.

A.M.S. Classification : 32C40.
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After Brieskorn, many people have studied the structure of this lattice
with the connection, by looking for a basis of My over C{t} (or C{{9; '}},
cf. 1.8) such that the differential equation associated to the connection
and the basis becomes as simple as possible. In this paper, we change
the view point and try to understand the “shape” of this lattice as a
subspace of M. Here the key point is that we know completely the
structure of the regular holonomic Dg g-modules on which the action of §;
is invertible (i.e. bijective), cf. §1. In particular, we have a basis {u;} of
M over C{{8;'}}[8;] corresponding to a choice of a basis of the Milnor
cohomology which is compatible with the monodromy decomposition (i.e.
the decomposition by the eigenvalue of the monodromy). We assume
further that the basis of the Milnor cohomology is compatible with the
Hodge filtration, i.e. gives a splitting of the Hodge filtration. Then we can
find a basis {v;} of My over C{{8;'}} such that the base change matrix
between {u;} and {v;} becomes as simple as possible, cf. 3.4. Up to now,
we used only the C{{8;'}}-module structure of My and M. To study
the action of t on My, we have to add some condition for the choice of
the basis of the Milnor cohomology, i.e. the above splitting of the Hodge
filtration is compatible with N the logarithm of the unipotent part of the
monodromy, divided by 27i. Then the main result of this paper is that

the corresponding basis {v;} behaves very well with respect to the action
of t, i.e.

THEOREM. — There are two matrices Ay and A, with complex
coefficient such that
(**) tv = Agv + Alat_lv
where v = (vy,...,v,) with {v;} as above. Moreover A, is nilpotent, A,

is semi-simple and the eigenvalues of A; coincide with the exponents (or
the singularity spectra added by one), i.e. each v; is an eigenvector of A,
with eigenvalue o; and {au,...,q,} are the exponents of f in the sense of

S7].

Because the basis {v;} is not intrinsic, we can replace it by the
corresponding C-linear section v of the natural projection :

pr: Mo — Mo/8; Mo = Q%0 [df A% = Qf

such that Imv = ¥Cv;. Then the above theorem means :



BRIESKORN LATTICE 29

THEOREM '. — To each splitting of the Hodge filtration satisfying
the conditions as above, there correspond a C-linear section v of pr and
C-linear endomorphisms Ay and A; of Qy such that

(% = %) tv = vAp + 0; vA,.

Let QF be the a-eigenspace of 2y with respect to the action of A,
and put V*Q; = 69,320‘9?. Then

PROPOSITION. — We have AoV*Qy C V**t'Q; and GryAp can
be identified with —N. In particular, T, and T, are identified with
exp(—27iGry Ap) and exp (—2miA,) respectively, where T = T,T, is the
Jordan decomposition of the monodromy. (But Aq and A, do not commute
in general.)

Here note that Ao represents the multiplication of f on §Qf by
definition, cf. [V2]. In the proof of the proposition we use the section
v or the basis {v;} to construct the identification between Qs and the

Milnor cohomology (hence it depends on the choice of the splitting of the
Hodge filtration on the Milnor cohomology).

Combining the main theorem with a result of Malgrange [M3], we can
deduce the existence of the primitive form in the sense of K. Saito [Sk],
because its definition is purely microlocal. (We also show that there exists
a primitive form whose associated exponents are different from the usual
one.) But, to get a nontrivial result on the associated period mapping (e.g.
the determination of its image or the construction of the inverse mapping),
we need a completely new idea, because the period map behaves very wildly
around the points of the discriminant corresponding to non rational double
singularities and the support of the microlocal Gauss-Manin system is just
the conormal of the discriminant, cf. [Ph]. For a moment his theory works
well only in the case of rational double point and simple elliptic singularity
where the non-negativity of the degree of the C*-action on the base space
is essentially used, cf. also [Lo] etc.

As another application of the theorem, we get some information about
the b-function b(s) of f. By [M2], (s+1)b(s) is the minimal polynomial of
the action of —8;t on My/tMo, where My = Z(att)iMo the saturation of
Mpy. Let M* be the subspace of M annihilated by a sufficiently high power
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of 3;t — a. Then for each section v in Theorem’ there exists subspaces G*
of M* and C-linear maps cg, : G* — MP for 0 < o < B < n+1 such that
Caq is the natural inclusion and Im Z cpa = v(25),1.e. cgo's correspond
B

to the transformation matrix for the two bases {u;} and {v;}. Then M,
is compatible with the infinite direct sum decomposition M = ®M?, i.e.
M, = éﬁ{,’ with 1\75’ = My N M?®, and Mf is spanned by the images of
Niafjcl;_j,a fori > 0,5 > 0,0 < B —j, where N = —(9;t — 8) on M5,
Note that (s + 1)7'b(s) is the product of the minimal polynomial of the
action of —8;t on Mg /8,1 Mg

In the case n = 1, the situation becomes simple and we get
(s +1)"b(s)

= H (s+1-a) H (s+2-a) H(3+a)

Ker fﬂﬂ‘;#ﬂ‘f’ Ker fnn‘;;éo red a€A

dim Mo /Mo =) dim (0% /Ker f N QF)(> dim Q;/Ker f = dim Imf),

if the decomposition Qy = @0} is associated to v corresponding to a
splitting of the Hodge filtration orthogonal with respect to the duality of
mixed Hodge structures (cf. 2.8). Here [H(s + i)™ red = H(s + o) if
a; # (i # j) and m; >'1, and A is the set of rational numbers a such
that 0 < a < 1 and the monodromy is not semisimple on its exp(—2mia)-
eigenspace. This formula was inspired by a work of Cassou-Nogués [CN2].

In general cg, depends holomorphically on the parameter of a u-
constant deformation, and we can determine the b-function of the generic
p-constant deformation of a quasi-homogeneous polynomial in the case
n =1, cf. (4.2.6). In some special case, it was obtained by Cassou-Nogues
using another method [CN1]. I am also informed that (4.2.6) is known to
Briangon-Granger-Maisonobe, cf. [BGM].

The contents of this paper are as follows.

In §1 we review some elementary facts in the theory of regular
holonomic D-modules of one variable for non-specialists of D-modules
(cf. also [BM][Bo]). In §2 we review the theory of filtered (micro-local)
Gauss-Manin system (cf. also [SKK][K2][Ph], etc.). We also explain the
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relation between the micro-local duality and the “higher residue pairing”
of K. Saito (cf. also [O]). Some of the facts in §1 and §2 (e.g. 2.2-4)
were explained to Scherk-Steenbrink and used in [SS]. In §4 we introduce
the notion of (A)-and (B)-lattice and prove the formal part of the main
theorem, cf. 3.4-6. For the existence of the splitting of the Hodge filtration
we prove 3.7 and use [V1][S1][SS]. In §4 the relation with b-function and
primitive form is explained.

This paper is the revised version of [S3] and the most part of the
results was obtained during my stay at Institut Fourier in 1982/83. 1
would like to thank the staff of the institute for the hospitality, and

CNRS for financial support. I thank Professor Cassou-Nogués for useful
communications.

1. Regular holonomic D-modules of one variable.

1.1. Let S be an open disc with a coordinate ¢, and put S* =
S\{0}, D = Dsp and O = Osyo. Then a D-module M is called regular
holonomic, if M is finite over D and its localization M[t~!] by t is a regular
singular meromorphic connection. Here the last condition is equivalent to
the existence of a saturated lattice L of M[t™!] (or M), where a lattice
and saturated mean respectively that L is a finite O-submodule generating
M[t™!] (or M) over O[t™!] (or D), and L is stable by t0;. Because any
regular holonomic D-module is uniquely extended to a Ds-Module whose
restriction to S* is finite free over Os+«, M will be sometimes identified
with the extended Ds-Module. Then we can define the de Rham functor
(dual of the solution) by

(1.1.1) DR(M)=C(8; : M — M)[-1] € D¥(Cs),

where we use an old definition of DR so that DR(Q) = Cgs for example.
By definition the restriction of DR(M) to S* is a local system and its
monodromy is called the monodromy of M. We denote by M,(D) the
category of regular holonomic D-modules. Then

1.2. LeMMA. — The simple objects of M, (D) are (up to isomor-
phism) :

()0 =D/Dd,, (B)B=D/Dt, (c)M(a)=D/D@Bt - a)(a € A'),
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where A’ = A\{1} and A is a subset of C such that the composition
A — C — C/Z is bijective and A 3 1. Moreover for simple objects M, N
we have Ext! (M, N) = C if (M, N) = (0, B), (B, 0) or (M(a), M(a)) and
it is zero otherwise.

We can verify by induction on the length :

1.3. LEMMA. — The indecomposable objects of My,(D) are (up to
isomorphism) :

L. D/D(6:t)’, IL. D/D(t8;)}, I1L. D/D(8,t)*~18,, IV. D/D(td,)*'t,
V. D/D(0st — a)i(a € A') where i € N\{0}.

1.4. Remarks. — 1) By the above proof, any indecomposable object
has a unique increasing filtration G such that Gr®M is simple and
GriGM #0if 0 < ¢ < 7 — 1, where r is the length of M. Moreover
Gr¥M = O for i even (resp. odd) and B for i odd (resp. even) if M is
type I, III (resp. II, IV), and Gr¥M = M(a) if M is type V. For the
existence of such a filtration we can also use :

0— D/'DP-—E—aD/'DPQ —D/DQ — 0.

2) The action of ¢ is bijective, i.e. M is a meromorphic connection,
if M is type I, V, and &; is bijective, i.e. M is isomorphic to its micro-
localization £ ®p M, if M is type II, V. Here £ is the germ of micro-
differential operators at (0,dt), cf. [SKK][Ph].

3) Put K = DR(M), cf. (1.1.1), and L = K|g.. Then K =
Rj.L,jiL, 7. L respectively if M is type I, II, III, and these three coincide
if M is type V.

4) Let f : X — S be a Milnor fibration (resp. a projective morphism
such that X is smooth and f is smooth over S*). Then the indecomposable

j

submodules of ( / (’)X) are type I, Vif j =0 and n > 1 (resp. type
f 0

I, V and B in 1.2 (i.e. type IV with ¢ = 1) for any j). The assertion in

the case of Milnor fibration follows from the contractibility of the singular
fiber, cf. [M1][Ph], etc. The assertion for f projective is equivalent to
the local invariant cycle theorem (modulo the duality), because the latter
is equivalent to Gt M = O for any indecomposable submodule M of
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J
( / &) x) whose support is S and monodromy is unipotent. In fact by
f 0

the exact sequence

i-1 0 [i-1 . j O i
/ OX———>/ Ox —» R" f,Cx —'/ Ox———’/ Ox
f f f f

with the surjection of d; on S*, the local invariant cycle theorem is
equivalent to the surjectivity of

H°DR(M)o — (H°DR(M);)T (the invariant part by the monodromy T)
for any M as above, and we have

H°DR(M)o =Ker (8; : M — M)o =Ker (8; : M* — M°), cf. 1.6,
(H°DR(M);)T = Ker (t8;, : M* — M*),cf. (1.6.1), where t’ € S*.

This argument (with the above proof of 1.3) was used in the
first analytic proof of the decomposition theorem of Beilinson-Bernstein-
Deligne-Gabber for f projective and dim S = 1 as above, cf. [S2]. (Here
note that the intersection complexes are type III, V or B).

5) The above classification 1.3 was well-known to specialists more or
less independently, cf. for example, [BM][Bo]. We can also verify that it
is equivalent to the following :

1.5. LEmMA. — For M € My,(D) put M* = U;Ker ((8;t — a)*
M — M). Then we have the natural inclusions

(1.5.1) &M - M — [[ M=,
«

and M is generated by ®,M®* over O in H M*®, i.e. M is the completion

of &, M* by some topology (compatibleawith that of O)and we denote
M =@ M*.

1.6. Remarks. — 1) Put M) = éﬁ_aezMﬁ so that M =
®aeAM(q). Then M, is uniquely determined by (M* ; Gt — a) if
a € A and (M*, M° ; 8,,t) if o = 1, because 8, : M* — M*!
andt : M* ' — M® are bijective for o # 1. Therefore 1.5 implies 1.3.
The converse is clear.
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2) The lemma 1.5 was classically well-known in the meromorphic case,
cf. also [D1]. Moreover we have the isomorphism :

(1.6.1) L), —— M®* for A = exp(—2mia) and a € A

induced by u — t*! exp(—Nlog t)u, where Lo, = TI'(S*,7*L) with
x : §* — §* a universal covering, L) =Ker (T; =X : Lo — Loo),
N = (2mi) log T, and T = T,T, is the Jordan decomposition of the
monodromy. Here we used the natural inclusion

(1.6.2) M[t™'] — j.(Os- ®¢ L)

where j : S* — S is the natural inclusion, cf. [D1]. Note that the natural
morphism :

(1.6.3) M — M|t

induces an isomorphism M® ——— (M[t™!])* for @ ¢ —N and (1.6.1) is
true for a general M € M;,(D). We can also prove 1.5 for a general M
using (1.6.3), because the functor M — M*® is exact, and M = &; . NM -
if supp M = {0}.

1.7. Let Mp(D)qu be the full subcategory of My,(D), whose objects
have quasi-unipotent monodromies, i.e. M* =0 for a ¢ Q by (1.6.1). For
M € M(D)qu, we define

VeM =Y OMP (= &pzaMP).
B2a
(If M is not quasi-unipotent, we have to choose some order of C.) Let
m be the order of T;. Then VoM = VV/™M if (i — 1)/m < a < i/m
with i € Z, and Gr§ M = VM Ve M(0 < e < m™!) is well-defined. If
a > 0, VM is Deligne’s extension of M|s. such that the eigenvalues of
the residue of the connection are contained in [a — 1, @) [D1], cf. 1.6.2.

Note that the filtration V' is exhaustive and separated, and is
independent of the coordinate ¢; in fact, V is characterized by the following
conditions (due to Kashiwara, cf. [K3]) :

(1.7.1) V*M are finite O-submodules and M = U, VM.

(1.7.2) t(VeM) C VoM, 8,(VeM) C VM and t(VeM) =
Vel M(a > 0).
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(1.7.3) st — « is nilpotent on Gry; M.

1.8. Let K be the subring of £ (cf. 1.4.2) whose elements commute
with 8;, i.e. K = C{{0;'}}|0:] and R : = C{{9;'}} is

{Za,@t‘i : Y a;r'/il < oo for some r > 0} :

120 i

Then R is a discreet valuation ring and K is its quotient field. We can
verify that if the action of 0; on M is bijective, VM are free- R-module
of rank r and M is an £-module (hence a K-module) where r is the rank
of M over K (in fact, M = K Qg V*M for any a € Q). In this case,
an R-submodule Mj is free of rank r over R if M, is finite over R and
generates M over K (i.e. M =Y _8iMp).

2. Filtered Gauss-Manin Systems.

2.1. Let f : X — Y be a morphism of complex manifolds with
dim X = n+ m and dim Y = m. The Gauss-Manin system is naturally
defined as a filtered complex of right D-Modules :

(2.1.1) Rf. (2% ®f-10y f_IDY’ F)[n+m]a

cf. [S5, §2]. Let (y1,...,¥m) be a local coordinate system of Y, and put
fi = f*y:,0; = 98/0y; and & = (b1,...,0m). Then the corresponding

filtered complex of left D-Modules is denoted by / (Ox, F) and locally
expressed by !
(21.2) Rf.(Qx (0], F)[n +m],
where the differential and the D-Modules structure is given by
dw®P)=dw®P - dfj A\w®d;P
Yiw®P) = fw®P+w® [y;, P
Oi(w®P)=w®d;P
for w € 0% and P € C[0)], and the filtration by

ROk = ) 92%e?.

|v|<p+k—m
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Here we define the filtered direct image to be the inductive limit of
Rf«(FpQx[0])[n +m] (using the canonical flabby resolution of Godement)
so that the filtration becomes exhaustive, cf. [loc. cit]. Note that the
direct image f, does not commute with the inductive limit in general, and
forgetting the filtration, this definition (2.1.2) does not coincide with the
usual one :

L
(2.1.3) /; Ox =Rf«(Dy—x®pxOx)

(for example, consider the composition of X — pt — C where X is zero
dimensional and has infinitely many components, cf. [S5, 2.3.8]). But we
have the following :

2.2. LEmMA. — If Sing f = {z € X : rankdf, # m} is proper over
Y, / (Ox, F) coincides with / Ox forgetting the filtration F.
f f

This follows from the next two lemmas :

2.3. LEMMA. — Let f : X — Y be a morphism of topological
spaces, and (K, F) a filtered complex such that Gr:: K' are flabby, F is
exhaustive and K is bounded below. Assume that there exists a closed
subset Z of X such that Z is proper over Y and Grf K are acyclic on
U = X\Z for p> 0. Then the natural morphism

lim f,F, K - Rf. K
is a quasi-isomorphism.

Proof. — Note that the assertion is clear, il f is proper. In this case,
we can show the commutativity of f, and lim, and the stability of c-soft

sheaves by inductive limit.

In the general case, we take a flabby resolution K — I so that
Rf.K = f.I, and consider the distinguished triangles :

—T,L—L—jj L5

for L = F,K, I where j : U — X. Then we have a quasi-isomorphism
J"'F,K — j7'I (p > 0) by assumption, and [, F,K*,L,I' are also
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flabby. Then the assertion follows from the diagram

— lim f,L;F, K —lim f,F,K —lim f.j.j ' F,K+}
1 1 1
= f.L,I —f.I —fugug =

because the quasi-isomorphism lim[;F,K — LI follows from the

morphism of the above triangles.

2.4. LEMMA. — Let f : X — Y and (Qx[0], F) be as in (2.1.2).
Assume f is smooth, i.e. Sing f = 0. Let A" be the subcomplex of Q% [9]
such that A* = n;Ker (dfin : Q% — Q4F1), where f; is as in 2.1.
Then I1;df;A induces an isomorphism QX —— A[m], and the natural
inclusion (A", F) — (Q2x[0], F) is a filtered quasi-isomorphism, where F'
on A' is induced by the inclusion, i.e. FpA" = 0>pm_pA".

Proof. — Let (x1,...,Zn+m) be alocal coordinate system of X such
that z; = f; for ¢ < m. Then the first assertion is clear. The graded
complex Gr¥' (Q%[d]) is the Koszul complex associated to 7;(1 < i < m),
O(n times) € End (Ox|[n]), where n = (m,...,Mm) and 7; = Gr 9;.
Therefore it is graded quasi-isomorphic to the Koszul complex associated
to O(ntimes) € End (Ox) shifted by m to the right. Then we get the
assertion, because the last complex is isomorphic to Gr A by the natural
morphism.

Remark. — Q2 y is globally well-defined, but Qx[0] is not. The
exterior product by df; A ... A df,, corresponds to the transformation of
left Dy-Modules to right Modules.

25. Let f: X - Y and y; , f;, etc. be as above. Put Z =X xY
and Bx|z = / Ox where i : X — Z is the immersion by the graph of f.

Then we have an isomorphism

(2.5.1)
Bxiz =Dz/ Y Dz(fi—vy:)+ ) Dzl a/axz+z 0f,/0:)d;) = 1.0x 0]

so that the action of Dz on ¢,Ox[0](= DzIIé(y; — f;)) is given by
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(2.5.2) (8/0z:)(a® P)=(0a/0z:) ® P — Y (3f;/0z:)a® ;P
(0/0y;)(a ® P)=a® 0;P
z;(a ® P): ;a® P
Yi(a® P)= fija® P+a® [y;, P)

fora € Ox and P € C[J], where (a®P) is identified with (a®P)II§(y; — f;)-
Let F be the filtration of Bx|z by the order of 0 (i.e. induced by that on
DzI16(y; — f;)) shifted by m. Then we get the natural isomorphism

(% (0], F) = DRz,y(Bxz,F)
where (F,,DRZ/yBXlZ)’c =0k ® Fpy £ Bx|z. Tensoring (2.5.1) by £x over
Dx (where £x is defined on T* X, cf. [KK]), we get

(25.3) Cxjz=Ez/) Ez(fi—wi)+ D €2(0/0zi + Y _(8f;/02:)9;)
J

where Cx|z has the filtration F' induced by that of £z shifted by m =
codimz X. We define the micro-local filtered Gauss-Manin system by

(25.4) / (Cx12, F) = Rp. DRz (Cx 12, F)[n +ml,
P

where p : Z — Y is the projection and X x T*Y — T*Y is also
denoted by p. Here note that DRz,y(Cx |z, F) if filtered acyclic on the
complement of X x T*Y, because (0/0x;)~" exists in F_;€z on {¢; # 0}

where §; = Gr 0/0z;, cf. [SKK]. Let IE*Y be the complement of the zero
section. Then DRz,y(Cx)z, F) is filtered acyclic on (X\Sing f) xT*Y,

because supp M N (X\Sing f) x T* Y = 0. In particular, (2.5.4) coincides
with the usual definition [K1][Ph], forgetting the filtration and restricting

toT*Y, if Sing f is proper over Y. From now on, we assume the following :
(2.5.5) Assumption : Sing f is finite (hence proper) over Y.
In particular, p is non-characteristic to Cx|z. By [KK] [K2] [Ph],

the cohomologies of / C are zero except for degree zero and
P

x|zlTey
/ c o (identified with its zero-th cohomology) is coherent over
» x|zlT+y

€ o+ and regular holonomic so that
YIT'y

(2.5.6) A = p.(Ch(Cxjz) N X x T*Y)
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where A = Ch (/ c 0 ) and Ch(M) = supp (M) for an £-Module
» x|zlTy
M. We have also

(2.5.7) F on /C)qzlf'y is strict.
p

In fact, the non-charactericity implies dim Ch(Cx|z) N X x T*Y < m,

and GrFDRz/y((,’X|Z,F)| Xxoy is acyclic except for degree n by the
X -

microlocalization of (2.5.2), because

Ch(Cx|z) N X x T*Y ={(z,n) € X xy T*Y
> (8fi/0zi)m; =0(1 <i < n+m)}.

J

(In this case, we can also use dim f(X,) < r and dim X, < r(r < m),
where X, = {rank df, <r}.) We can also verify fory € Y :

(2.5.8) rank df; =m — 1 for any z € (Sing f),, iff dim T;Y NA =1,
where (Sing f), = Sing fNf~'(y). If {z} = (Sing f),, (2.5.8) is equivalent
to:
(2.5.9) f is a deformation of a function with an isolated singularity on a

neighborhood of y, iff / Cx|z is in a generic position at T;Y N A,

P
cf. [KK].
Here the first condition means that y has a neighborhood of the form

S x T such that dim S =1 and pr, o f is smooth on a neighborhood of z,

where pr, : S X T — T. From now on, we assume the above equivalent
conditions. By restricting X and Y, we also assume for 0 < §,§' < ¢ € 1:

(25.10) Y=SxTwithS={teC: |t|<6},T={eC™! : |t|<

§'} and X = {(z,t') € C"* x T : |z| <, f'(z) € S}, where f’
is defined by f(z,t') = (f'(z,t'),t).

Heret =t; and t' = (t2,...,tn). We may assume
(2511)  n>0,

because the case n = 0 is a deformation of A,-singularity and not so
much interesting. By (2.5.10) we have a factorization f = p’ o i’ where
p :Z2'=X xrY — Y is the second projection. Then we have
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(2.5.12) /f (Ox,F) = / (Bx|z:, F) = f(Qx r[01], F)[n + 1]
pl
[€exzF) = [ €xiz
P 4

where 9; = 8/0t; for 1 < i < m and the filtration and the differential of
Qx 7(01] are given by

Fp(Ql;(/T[Bl]) = Z Ql)c(/T ® 9]
i<p+k—1

dw®d})=dw®0 —df Aw® 0t
Here note that f is a Stein morphism and Q’j( /T are f+-acyclic. We
k
denote also by F' the induced filtration on - / Ox :=H* / Ox and
f f

k
H’“(Q’X/T[aﬂ)- Then (/ Ox) is independent of € in (2.5.10) and
f

0
(2513) (‘/]; OX, F) = (Hn+1(Q}(/T,0[aI])7 F)a

because H’“Q‘X /s are locally constant on the fibers of f, if f is smooth.
By [Ph] we have the canonical isomorphism

0 0 o
(2514) (/ Ox) ;) (/ Cx|z) for n e T*OY NA.
f p 7

0

(Here we may assume 7 = dt; by changing the coordinates and the
decomposition Y = S xT'). In fact, the morphism in (2.5.14) is the natural
morphism associated to the micro-localization and the right hand side is a
holonomic Dy g-module by [KK,5.1.1]. Therefore its kernel and cokernel
are finite free Oy o-modules, because its micro-localization induces an

(e
isomorphism on TY. But the action of 8, is bijective on the both terms
of (2.5.14) by the exact sequence

0 9 0
Han/T,O - (/ OX) ——1-—) (/ 0){) g Hn+IQ;Y/T‘0.
f f

0o )
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Thus we get (2.5.14). As to the filtration F', we have

0
(2.5.15) (F_n ff Ox) = Q% o/df AT,

0
because {9f'/0z;(0 < i < n),t;(2 < i < m)} is a regular sequence. We
0
also verify the stability of (F_n / O x) by 07! so that
f

0

0 0
(2.5.16) (F_m / ox) =0 (F_,, / ox) for i > 0.
f f

0 0

Then the isomorphism (2.5.14) induces

0 : 0
(2.5.17) (Fq/ OX) = (Fq/ CX|Z) for ¢ > —n,
f p 7

0

because it is enough to show it for ¢ = —n and in this case we can reduce
the assertion to the case Y = S using the non-characteristic restriction to
S x {0}, cf. [K2][Ph]. In fact, (2.5.17) is equivalent to the assertion that
its first term is an Ey ,(0) — (or Op o{{8;'}}—) module, because

0
(2.5.18) (Fq / CX|Z> are finite free of rank p over R,
P

n

where R = (')T,O{{(')l_l}} =&y, N OT,O[[GI‘I]], cf. [Ph].

Remark. — The right hand side of (2.5.15) is called the Brieskorn
lattice. We can also verify the coincidence of 8] ! with the inverse of the
natural connection Ay, a;, defined on it, using (2.5.2).

2.6. Let the notation and the assumption (i.e. (2.5.5)(2.5.10) and
(2.5.11)) be as above. We assume further Y = S, i.e. T = {0} in (2.5.10).
Put

0
(26.1) M= ( / OX) y Mo = F_, M (= Q3 [df AdQYS).
f 0
Then M is quasi-unipotent and has the filtration V, cf. 1.7. We denote
also by F the induced filtration on Grj;M. Note that the freeness of
M, follows from the inclusion My C V>°M proved in [M1, K1]. (It
can be also proved as in [Ka] with QY ¢(logD) replaced by Ax, where
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A% 1 ={we Q% : df Aw=0}.) Let H*(X,C) be the cohomology of
the Milnor fiber, and H"*(X o, C), the kernel of T; — A where T' = T, T,
is the Jordan decomposition of the Milnor monodromy, cf. [St]. Then
H™(X s, C) has the natural mixed Hodge structure whose Hodge filtration
is compatible with the monodromy decomposition [loc. cit] :

H"(X,C) = @ H"(Xc0, C)».
By (1.6.1) we have the isomorphisms
(2.6.2) H"(X,C)y =G5y M for a > 0 and )\ = exp(—2wic).

Moreover this isomorphism is compatible with the Hodge filtration, i.e.
(2.6.3)

FPH"(X,C)y = F_,GItyM  for 1 > o > 0 and A = exp(—27ia),

cf. [V1][S1-2] (see also the revised version of [SS] for a proof using a
language which is not so much sophisticated). Note that (2.6.3) was
(essentially) first found by Varchenko [V1], but he used essentially the
filtration F_,,, = t7PM in M[t™'] instead of F_nyp, = 87 Mo in M,
cf. (2.5.16), where t = t; and 9; = 0;. (Here we use the natural
inclusion My — M[t™!] induced by M — M[t™!], cf. (1.6.3).) Therefore
he had to take Gr' to cancel the difference of ¢ and 8;' (i.e. the
action of N). Note also that the decomposition M = @M®* (cf. 1.5)
corresponds to the asymptotic expansion used by Varchenko [loc. cit]
and the Hodge filtration F' is not compatible with this decomposition, i.e.
Mo NVOM # (Mo N M®) + (Mo N V>*M) in general, cf. [S1]. This is
why we have to take Gr{ instead of V>°M[t=*)/V>! M[t™!] as in the first
version of [SS]. By the same reason we may not use 87 M, in M[t™}].

In [S4, §4] we gave some explanation of (2.6.3) from the view point
of (mixed) Hodge Modules (i.e. (2.5.7) (2.5.17) are essential). This gives
also a proof of (2.6.3) without using a compactification of f.

2.7. Let Y = S xT be as in 2.5. Put (£,F) = (Ey,,, F) with
n = (0,dt1) and F,& = E(p), cf, [KK]. Let (M, F) be a filtered £-module
such that

(2.7.1) F,M are free of rank r over R,

where R = £NOr,[[0;}]] and K = R[8;]. Let F be the filtration of R, K
by the order of 3;, i.e. F,R = RN F,€. Then (M, F) is isomorphic to a
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direct sum of (K, F) as a filtered K-module. We define the right action of
{on £k M by
(PRu)=Pt@u—PQ¢&u

for £ = t,,05,...,0m, where 9; = 9/dt; and t' = (t2,...,tn) are the
coordinates of T. We consider the Koszul complex C’ associated to the
right action of 8,,...8,,, where C’ is shifted by m — 1 to the left so that
C'* =0 for k < —m or k > 0. We define the filtration F on £ ®x M and
C' by

F,(£ @k M) =1Im (F,£ ®r FoM — £ @k M)
F,C'* = @F, 1+ (£ ®k M).

Let (C,F) be the mapping cone of the right action t; : (C',F) —
(C',F). Then C is the Koszul complex associated to the right action of
t1,02,...,0m. By definition we have a natural morphism (C, F) — (M, F)
as complexes of filtered £-modules. Then

(2.7.2) (C,F) — (M,F) is a filtered quasi-isomorphism, i.e. F,C —
F,M are quasi-isomorphisms.

In fact it is enough to show the acyclicity of C(Grf C— Grf M) for
any (or some) p, because FI,C"c , FpM are finite Fo€-modules, cf. [SKK]
etc. Let m be the maximal ideal of Or := Org.Then it is enough to
show its acyclicity after tensoring O /m’ over Or for any j > 0, cf. [Se],
because Grka, GrfM are finite over Op+y , = Gr 58, where P*Y is the
projective bundle associated to T"Y, cf. [SKK].

By definition Grf C ®0, Or/m’ is the Koszul complex associated to
the action of t; ®id —id ®t;, 7, ' ®id —id ® 77 '7:(i > 2) on
(Op+T,/m Opey ) Q0 /mi Gr:,?M/m" GrfM

where 7; = Gr 9;. Here the action of t;, 7, 7;(s > 2) on GrfM/mj Grﬁ‘M
is nilpotent, because it is finite dimensional. Then we may assume that
their action is zero, taking the graduation associated to some filtration,
because these actions are commutative. We get the assertion by the fact
that t;, 7, 7;(i > 2) is a regular sequence of

. -1 -1 .
OP*Y,?]/mJOP‘Y,’I] = C{tla e ,tm,Tl T2y..45T Tfn} ®OT OT/mJ7

cf. [Se]. Thus we get the canonical filtered free resolution of (M, F').
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By definition D(M, F') the dual of (M, F) is given by
(2.7.3) D(M, F) = Homg((C, F), (€, F[2m]))[m],

where F([j] is defined by F[j], = F,_; for j,p € Z. Here the right hand
side is a filtered right £-module, and for the transformation to the left
module we shall use the anti-involution P — P* of £ such that

(2.7.4) t’; =1, 6: = —0;, cf. [SKK]

We consider the canonical isomorphisms as right £-modules

Homg (M, K) ® £ —— Homg (M, £) —— Homg (£ @ M, £)

induced by ¢ ® P — [u — ¢(u)P], 9 — [Q ® u — Qi(u)]. We define the
right action of £ = t1,0;(i > 2) on Homg (M, K) by

(¢8)(u) = @(&u) — [€, ¢(u)]

for ¢ € Homg(M,K), u € M, and its left action on Homg (M, K) ®k £
by £(p® P) = ¢ ®EP — p€ ® P. Then we can verify that the left action of ¢
on Homg (M, K)® & corresponds by the above isomorphism to the action
on Homg (£ ® M, E) induced by that on £ ® M. By the same argument
as above, D(M, F)) is a filtered £-module, i.e. F' is strict, where it is well-
known that DM is a holonomic £-module, cf. [K1].

We define D'(M, F) a filtered K-module with the right action of
(2.7.4) D'(M,F) = Homg((M, F),(K, F[1 + m]),

where the action of ¢;, etc. is defined as above. Then by the above
argument we have the canonical isomorphism

(2.7.5) D(M,F) =D'(M,F)

as filtered K-modules with the right action of ¢;, 8;(¢ > 2), because Grf
of (2.7.5) is clear and F,DM are finite over R, cf. for example, [Ph][M3].
In particular the right action of ¢;, etc. is extended to the structure of
right £-module.

Let (N, F) be a filtered right £-module. By (2.7.5) there is a one-to-
one correspondence between the filtered £-linear morphisms

¢ : (N,F) - D(M,F)
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and the filtered K-linear morphisms

S: (N7F)®K (MaF)_) (KrF[1+m])
satisfying

(2.7.6) [&,S(v,u)] = S(v,&u) — S(v€,u) for u€ M,vEN,

where £ = t1, 0;(i > 2). Assume now (M, F) is self dual, i.e. we have a
duality isomorphism

(2.7.7) D(M,F) = (M, Fluw])

for some w € Z, where w is called the weight of (M, F). Then the duality
isomorphisms (2.7.6) correspond bijectively to the pairings

S : (M,F)®c (M,F)— (K,F[1+m—w])
satisfying

(2.7.8) PS(u,v) = S(u, Pv) = S(P*u,v) for P€K,
(279) [ga S(u,'u)] = S(’ll., 5’0) - S(é*u’ ’U) for £ =t, al(z > 2):

(2.7.10) S(F,M,FyM) C Fpyq-1-miwK

so that

S : GrfM ®0r GrfM — Gr:;_q_l_m_,_wK
is non-degenerate over O, where * is the anti-involution of £ satisfying
(2.7.4). If furthermore M is simple holonomic, i.e. Ch(M) is irreducible

at 7 and the multiplicity of M is one on some Zariski open smooth subset
of Ch(M) near 7, we have

(2.7.11) Endg(M)=C

and the conditions (2.7.8-9) are enough to characterize S uniquely up to a
multiple constant.

From now on we assume (M, F) = /(C’X|Z,F),,, cf. 2.5. Then we

have the micro-local Poincaré duality

(2.7.12) D(M,F) = (M, F[n +m))
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(using, for example, the micro-localization of the duality in [S5, §2] applied
to a compactification of f). As a corollary, we get the existence and the
uniqueness of the “higher residue pairing” of K. Saito [Sk] on the Gauss-
Manin system of a versal deformation, because Ch(M) is smooth and the
multiplicity is one in this case, cf. for example [Ph] etc. (This name comes
from the fact that the restriction of § to Grf, M = Q’)‘(%, [df' NV (cf.

(2.7.10)) is the residue pairing of Grothendieck, where Gr} K = Or ® d:
by definition.) The above construction was inspired by Kashiwara’s
interpretation of the higher residue pairings as the duality (cf.[O]) and
the residue pairings (unpublished) of £-Modules. We can also check
directly that (2.7.12) corresponds to the higher residue pairing by the
above construction using the facts in [loc. cit].

The above identification is compatible with base change of T'. From
now on we assume T = {0}, m = 1, and use the notations in §1. We have

(2.7.13) S(M*, MP) c C®0;" if a + B =i and 0 otherwise,

by (2.7.8-9), and it induces the perfect pairings

(2.7.14) Gry$: Gry*t(M,F) ®¢ Gr{;(M,F) — (C,F[-n]) (0 < a < 1)
GryS : Gry(M,F)®¢ Gry(M,F) - (C,F[-n — 1))

wheie F on C is defined by GrfC = 0 for p # 0, and Grf(K, F) =
(C, F[i]). We can also verify that the perfect pairings (2.7.14) correspond
to the perfect pairing of mixed Hodge structure on the Milnor cohomology
by the isomorphism (1.6.1) (in particular, S is compatible with the rational
structure H"(X,Q) up to Tate twist, cf. Appendix of [S3].) In fact we
can easily verify that (2.7.14) corresponds to the pairing of ¢(i.e. Gr$; for

0
O$a<1)of/

(Ox, F) where f is a compactification of f), because ¢

does not change by the microlocalization. Then the assertion follows from
the general theory of mixed Hodge Modules, cf. [S6].

Let H,(Xx,C) be the dual of H*(X,C), and S* the induced
duality on it by §. Let I be the intersection form on H,(X,C), and
put H,(Xw,C)z1 = ®rz1Hn(X«,C)r. Then we have up to sign (and
Tate twist, depending of the definition of I) :

I= S* on Hn(Xoo,C);él

(2.7.15) .
I=S"0(N®id) on Hy(Xo,Ch
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where N = —N* on Hp(Xoo,C). (This follows from [S5,5.2.3].) Note that
2m+1

for f= Y ?,(2.7.15) implies Upy, = 2™+17™ /I, (2i—1), where U, is
i=1
the volume of the n-dimensional unit sphere (and Uzp—1 = 27™ /(m —1)!).

The following lemma will be used in §4.

2.8. LEMMA. — Let H be H"(X,C)#1 or H*(X,C); with the
duality of mixed Hodge structures S : H ® H — C(—r) defined over Q,
where r = n or n + 1. Then the Hodge filtration F' of H has a splitting
H = @GP” (ie. FPH = ®;>,G") such that T,G* C G*',NG* C G*! and
S(G%,GY) =0 fori + j # r, where T = T,T, is the Jordan decomposition
of the monodromy and N = (27i)~! ® logT,,.

Proof. — Put
GP=F"nY (F'nW,,) forieZ
q
IP = (FP O\ Wi o) N (F O Wpsg + > FI I N Wpig_ja) forp,geZ
j>0

where W is the weight filtration of H. Then we have H = &, (I”? by [D2]
and G? D @4,I79. Since S is a duality of mixed Hodge structure, we have

S(FP,F”)=0 for p+p > r(same for F),
S(W;,Wy)=0 fori+i <2r.
Then
S(G*,G")=0 forp+p #r,
because '
SF N Wy, F' NWpig)=0 forp+p <r.
Therefore we get G? = @177 and H = §,G?, because

dim GP < dim H- Y dim G” <) dim I?2.
p'#Er—p q
The conditions T,G? C G? and NG? C GP~! are clear by
T,F? C FP(same for F,W), NF? C F?~!(same for F)
NW; CW,_..
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29. Let Y = S x T as in 2.7, i.e. S and T are polydiscs such that
dim S = 1. Let (M, F) be a filtered regular holonomic £y-Module on

CI?*Y(= T*Y — zero section) whose support is contained in the conormal
of {0} x T. Then M is trivial along T(= {0} x T') and (M(¢'),F) =
Osx{} ®oy (M, F) is a filtered sy (4}-Module on 12*.5' x {t'}. Assume
M has the filtration V along T' (cf. [K3]) indexed by Q@ (cf. [S5]). Then
it gives the filtration V of each M(t') by VE*M(t') = Ogx (v} ®0y VM.
Let M7 be the intersection of the kernel of ¢ : M — M for any vector
field £ on T

Then M7 is a constant sheaf of &s,(0,4t)-modules on T' (using the
section ¢’ +— (t',dt)), where t is the coordinate of S. Since V*M are
stable by £, M7 has the filtration V, and the stalk of (M T Viatt' e T
is isomorphic to (M(t'),V) so that VoM = Oy ®o, V*MT. We assume

(2.9.1) Grg Gr§y M are free Op-Modules and F on each Gr{; M is a finite
filtration.

Then there exists integers, a,b such that
(29.2) F,MCcV*M forp+a<aand F;,M DV*M for p+a > b.

In particular V is also finite on each Grf M. We check that Gr{: , Gry

commute with the restriction Ogy(v}® and dim Grﬁ‘ Gry M(t') are
constant for t' € T.

Let £ € Der T be a vector field on T'. Then
E: M- M

is not Or-linear and does not induce a well-defined map ¢ : M(t') —
M) if € # 0. But Gr¥'o;7¢ : GrfM - GrfM is Or-linear and induces

Grfoe « GrEM(¥) - Grf M(¢)
so that Grf'9; 1e(VeGrl M(t')) c veriGrl M(¢).

2.10. Remark. — In the case of Gauss-Manin system associated to
a p-constant deformation f’ (cf. (2.5.10)), we can check the assumption
(2.9.1) using [V3] (or [S6] and the vanishing cycle functor ¢ along f'). We
have the isomorphism

Gran(t’) = Qf;/ (I = Qgtil,o/dftl' A Q%n-}-l,o)
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so that Gr¥'9;¢ is identified with the multiplication of —(£f')|y on Q fr
because £6(t — f') = —(&f')0:6(t — f'), cf. (2.5.2) applied to f' : X — S.
Here f;, and (£f')|w are the restriction of f' and £f' to C™*! x {t'}, cf.
(2.5.10). This implies a positive answer to the problem in [S1] :

(2.10.1) thelocal moduli of u-constant deformation is determined by the
Brieskorn lattice (as a subspace of the Gauss-Manin system),

in the case the y-constant stratum T is smooth. Here (2.10.1) means the
injectivity of the “period map” (defined on a neighborhood of 0 € T) :

U : Tt - F_,M(t') € L(M(0)) : = {the lattices of M(0)},

where the parallel translation given by M7 in 2.9 is used to define ¥. Let
H =V>'M(0)/V™*3M(0) and F}, = F_,_,M(t')/V"3M(t') C H(O <
p < 2), where F_,M(t') D V"' M(t') by (2.6.3), cf. (4.1.3). Then we
have

®: T>t — (F2,F:, F2) € Flag®(H)

which is factorized by ¥, because F_,_,M(t') = 8; PF_,M(t'). By defi-
nition ® is horizontal, i.e. £FP C FP~! with FP := F_,_,M/V""3M C
Or®HO<p<2),F=0F"'=0Or®H. Therefore the image of d®
belongs to the horizontal tangential space :

T3\ Flag’ (H) : = @ogp<z Hom (Grf,, Grf") C Ta() Flag *(H),
and the component of d®(£) for p =1 is identified with
Grf'¢ € Hom (Grf,_, M(t"), GrF M (t")).

This implies the injectivity of d® and ®, ¥ on a neighborhood of 0, because
T is a smooth subspace of a versal deformation so that Derr > £ — £f' €
Ox/ Y. (8f/8z:)Ox is injective.

0<i<n+1 .

Note that (2.10.1) is not true, if the Brieskorn lattice F_,M(t') is
replaced by Gry F_, M(t') (i.e. the Hodge filtration F on H"(X, C), cf.
(2.6.3)); for example f' = z* + y° + t22%y®, where F is constant, because
it is compatible with the decomposition H"(X,C) = ®H™(X 0, C)x and
dim H*Y(X,C)y =1or 0.
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3. Structure of (B)-lattices.

3.1. Let the notations be as in §1. Take M € M;(D)qu on which the
action of 0, is bijective, cf. 1.4.2, and let M, be a finite £(0)-submodule
of M generating M over £ (i.e. M, is a lattice of the D-module M (cf.
1.1) and stable by 8;'.) We define an increasing filtration F on M by
F,M = 8 My, and on M* by

F,M® = Im (Gt$ F,M — Gr{M «—— M®)

so that F,M* = 87 Gr%"PM,. Then F is a finite increasing filtration of
M* by assumption, and satisfies

(3.1.1) " . FM® —— FppM*™™,

Let U = {U?},¢z be a finite decreasing filtration of M satisfying

(3.1.2) o : UPM® — UPr™Me™,
We say that U is opposite to F if

(3.1.3) Gr) GtiM*=0 for p# g, cf. [D2).
This condition is equivalent to the splitting :

(3.1.14) M® = @, F,UPM®* such that F,M® = ®q<p FUIM*
and UPM® = @45, F,UIM®, cf. [loc. cit].

An opposite filtration U is called an opposite (A) — (resp.(B)—) filtration,
if

(3.1.5) N(UPM®) Cc UPM%*(resp.N(UP M) C UPT1 M?),
where N is defined by —(8;t — &) on M*. Put

(3.1.6) G = FyU'M* c M*.

Then (3.1.1-4) implies the decompositions :

(3.1.7) M = @,0°G®?, F,M® = @,<,0/G**1
UPM® = @Q,ﬂfGaH,
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and (3.1.5) is equivalent to
(3.1.8) N(G*) C G* @ 8,G**!(resp.N(G*) C 8;G**1),

because N(F,M*) C Fpy1M*® follows from tMy; C M,. We say that
M is an (A)-lattice (resp.a(B)-lattice), if F on each M* has an opposite
(A)-filtration (resp.(B)-filtration).

3.2. Examples. — 1) Let M = D/D(9;t — a)"(= £/E(dit — a)") for
a € A, cf. 1.2-4, and {e;} a K-basis of M such that (3;t — a)e; = e;4+; for
0<i<r—1and (0t —a)e,—1 =0, where R = C{{8;'}} and K = R[5}],
cf. 1.8. Put

M() = Z Rat-iei
Mj=>Y" Re;
M" = z Rafei.

Then M is a (B)-lattice but not saturated, My is a saturated (A)-lattice
but not a (B)-lattice, and M’ is saturated but not an (A)-lattice.

2) Let M = @®;=12E/E(8st — a;) with {e1,e2} a K-basis such that
(8:t — a;)e; = 0. Then any lattice of M is a (B)-lattice (because N = 0)
and given by
Z Ra;miei + C(Z aﬁ["‘"“e,;)
for my,ms € Z,a1,a2 € C (changing {e;} if a1 —az € Z). Infact u : =

Z aijat'"""jei € My with a;p # 0 and a; + n; # az + ng implies
1=1,2;52>0 .

;™ ey, Z ai00; "e; € My, because we may assume a;; =0 (j > 0)

by RMy C My, so that (t — (a1 + n1)0; ')u generates R3; ™ 'es C My,
cf. the proof of 3.4-6.

3.3. DEFINITION. — Let M and M, be as in 3.1, and
pr: My —» M, := Mo/6{1M0(= C ®r My)

the natural projection. Then a C-linear section v of pr is called
a good section, if pr,V = v*V (cf. 1.7 for the definition of V).
Here pr,V(resp.v*V) means the quotient (resp. induced) filtration, i.e.
(pr,V)® = pr V¥(resp. (v*V)* =v~1V?).
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Remarks. — 1) By Nakayama’s lemma, v induces an isomorphism
(3.3.1) Rec M ——— M(as R-modules).

2) In general, we have (v*V)® C (pr,V)®, because prov = id.

3.4. ProprosiTION. — Let the notations and the assumptions be as
above, and U an opposite filtration of F on M*(a € Q). Then there exists
a unique good section v of pr satisfying

(3.4.1) Imv=MyNP=&,M;NP*,

where P =Y U°M® and P*=G*+ Y U'MP, cf. (3.1.6).
@ B>a

Proof. — We define a finite decreasing filtration U = {U*} «cQ Of
M by

UM = Im(EBgZaK ®C GP — M)
and put UMy = My NU*M. Then we have

(3.4.2) UM, C VoM,

because GryyU* M, C Gry My N Gry UM C FoGry MNU'Gry M = 0 for
B8 < a, cf. (3.1.7).

We take v, ; € VM such that

[Va,] : = Va,i(mod.V>*My) € GrE My N GrE UM —— G©

and {[va,:]}: is a C-basis of G*. Because V* M, are R-submodules and R
is a discreet valuation ring (cf. 1.8), we can change v, ; (without changing
[va,i]) by induction on « so that

(3.4.3) va'i E UaMO.
Note that (3.4.3) implies
(3.4.4) {va,i}i is an R-basis of Gryy My = Gr Ve M(C Grg M),

because the inclusion Gr; My C Gr;V* M is clear by (3.4.2) and {v4,i}s
is an R-basis of Grf;V*M by GryGriy M «—— G°. Then if vg; satisfies
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(3.4.3) for B < a and v,; € U"M, for some v < a, we can apply

(3.4.4) to v, and change v,,; by adding Z G,jV~,j With g, ; € R, so that
)
Vi € U”7M for any v < a by induction on v, where g, jv,; € VM,

because Grjjva,; = Zg.,,jv,,,j in V> Gr;M so that g,; € ;%R

3

with & > a — 7. Using the base change matrix of the two R-bases
{va,i}ir{[va,i]}i of the R-module Gr;V*M = R ®¢c G*, we can further
change v,,; so that )

Va,i € G* + U”*M, and then v,,; € P*

by adding Z 98,;v3,; for g ; € R(B > a) by increasing induction on S.
J
Let

Po 1 MgNP® — G*
be the natural projection induced by the decomposition (1.5.1). Then
Do is surjective by the above construction of v,;. We can also check

the injectivity using the definition of P*, because Mg N Z U'M® = 0.
Therefore we get a unique section v of pr satisfying (3.4.1), because
MyN P D &My N P* is clear and we have the inclusion C by

Gr& (Mo N P) C GrEVeM N Grg P ——— G°.

Then v is a good section by definition. In fact, (v*V)* C (pr,V)® is clear
and we have the isomorphisms

Mo N P* —— Gry Gr{y M =~ Gr{Gry M ~ Gr3, My

which implies the inclusion D.

3.5. PROPOSITION. — Let the notations and the assumptions be as in
3.1, and v a good section of pr in 3.3. Let U M be the free K-submodule
generated by v(V*My) (i.e. K&cV*M, ~ U*M as K-modules). Assume
U®M are E-submodules of M (i.e. stable by t). Then the filtration U on
M* defined by

(3.5.1) UPM* = M*NU**?M
is an opposite (A)-filtration (cf. 3.1).
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Proof. — Set V = pr,V = v*V on My, and define

G*=Im (v : Gri$ My — Gr&M —— M%),

Then the assumption pr,V = v*V implies that the composition

_ v pr —
Gry My — Gry My — Gr§y M

is well-defined and the identity. Therefore we get a splitting of F on Gr{; M
by the direct sum decomposition

(3.5.2) GI{ M = @38:G***,

because Grf GrM = GrdGrl M = Gr{M,. On the other hand we have
a natural isomorphism

UiM® = (Ua+iM)a ., Gr?,Ua'HM,

because the D-linear morphism U***M — M is compatible with (1.5.1)
and strictly compatible with V. In particular, we get U:M* > 9iGo+t,
because U*Ti M D div(V*+iMy). This implies

(3.5.3) UM =Im (@K ®c G — M),

because the injectivity of the morphism in the right hand side is clear by
(3.5.2) and the both sides of (3.5.3) have the same dimension over K by
UM = K Q¢ V@M. Therefore (3.5.2) gives also the splitting of U on
each M“, which implies the assertion because (3.1.2) is clear.

3.6. THEOREM. — Let the notations and the assumptions be as
in 3.1 and 3.3. Then the constructions in 3.4 and 3.5 give a one-to-

one correspondence between the opposite (A)-filtrations U and the good
sections v of pr satisfying

(3.6.1) tv = vAg + 0, 'wA, for Ag, A; € End(Mo).

Here Ao, A; are uniquely determined by v, and VM, is the direct
sum of the eigenspaces of the semisimple part of A; with eigenvalue

> a. Moreover U is an opposite (B)-filtration, iff its corresponding A;
is semisimple.
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Proof. — Let U be an opposite (A)-filtration, and P,v as in 3.4. We
have 9;tP C P by (3.1.5), and ;' P C P by (3.1.2). Then
t(MoNP)C MyNd;*P=MyNP+3(MyNP),

because MoNP —— My/d; My —— Mo N8, P/ (M, N P).
Therefore we get (3.6.1), and the uniqueness of Ay and A; are clear. More-
over the opposite filtration constructed in (3.5.1) coincides with the original
one by the proof of 3.4-5 (i.e. the two G* coincide).

Now let v be a good section of pr satisfying (3.6.1), and put V =
pr,V = v*V on M. Then

(3.6.2) AVe c Vet A Ve cve,

because tVEMy C Vet My, 8;'VeM = V' M. In particular, U°M in
3.5 are £-submodules, and we get the corresponding opposite filtration U
on each M® by (3.5.1). Let G*, P® be as in 3.4. We have to show

(3.6.3) Im v C ®My N P2,
which establishes the one-to-one correspondence. Put
My = v71(G* + g>o(F-1 MP + U MP)),

cf. (1.5.1), where the two G* in 3.4 and 3.5 coincide by the proof of
3.5. Then by decreasing induction on o we check the surjectivity of the
projection (induced by (1.5.1)) :

(3.6.4) v(M,) - G*,

because Im (v : V®*My — Gr{y M) = G* by definition. We have also the
injectivity of (3.6.4) by :

(3.6.5) Im v NIg(F_; MP + U*MP) =0,

which follows from the definition of G* (taking Gr{; of (3.6.5)). Thus we
get

VMo = @pza My,
i.e. GBM: gives a splitting of V on M. Let

CBa Ga——bMﬁ

be C-linear maps such that Im (Z Cpa) = v(M,) and cnq is the
B8
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natural inclusion. By decreasing induction on a we shall show Im cgo C
U'MP(a < B), which is equivalent to (3.6.3). Here cg, are uniquely
determined by the bijectivity of (3.6.4). We denote by 7, the isomorphism

v : My —— G*(C Gr$ M)(cf. (3.6.4)).

Then we have

Zc,;am, = 'v|m : My — M.
By (3.6.1-2) and by in[ziuctive hypothesis we get

dytv|M, = vA;,[M, = vGrS A; (mod. Z U MP),
B>a
where Gr{;A; is identified with an endomorphism of Hﬁ‘ by the
isomorphism M, = Gr{;My. This implies
(B = N)cgaTa = cgaa Gry A;(mod. U°MP) for B8 > a,

where N = —(9;t — a) on M*. Therefore the assertion is reduced to
(3.6.6) the eigenvalues of Grj, 4, are
or equivalently
(3.6.7) GriiMy = V< G M,

because U*Mp = R ®¢ v(V*Mp). But (3.6.7) follows from the proof of
3.5, because GrjyMy C V® GrgyM and G* —— Gry GrpM.

To show that m is the a-eigenspace of A;, it is enough to show its
stability by A; (cf. (3.6.6)). We have the inclusion 3;tP* C G* + G;P,
which implies

att(Mo n Pa) C oMy N (Ga + BtP)
= MyNP* + at(Mo n P),

because 8; Mo N (G* + 8,P)/ Mo N P* —— 8,My/M,. Thus M, is
stable by A;.

Let Agy : M, — _M_g be the C-linear maps such that ZAﬁa =
B
Ag{m. Put ¢'go = cgama. Then

(3.6.8) (B=N)c'ga = Z 8¢ 1,7 Ava + Cso(A1|M7)
v
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follows from (3.6.1) for any 8 > a. In particular
(369) —N7y = at7l’a+1Aa+1,a + 7ra(A1 - a)lm

for a = (B. This shows the last assertion (cf. the remark below) and
completes the proof of 3.6.

Remark. — Let the notations be as in the proof of 3.6. Then
-N : G* - G*®9,G**!
and
(Gr3A; —a)® Gr3dy : My » Mo oMy

are identified by 7, and O;mq41, where Grj;Ag = Aqt1,o and Gry4; =
A|M,.

3.7. ProPOSITION. — Let M and My beasin 3.1. Let W be the mon-
odromy filtration of M (i.e. NW; C W;_5 and Gt NI Gr;V SN Gr‘ivj
for j > 0). Then the following conditions are equivalent :

a) My is a (B)-lattice,

b) N(F, GrWM“) = Fp.HGr :M* for any j > 0,p,a,

c) N7 : (M*,F)— (M®*,F[- ]]) are strict morphisms for any j > 0, a,
d) (M%,F,N) are isomorphic to direct sums of the copies of
(C[N]/C[N]Nm F[p],N) for p € Z,m € N, where F,C[N] = ®;<,CN*

and F(pl; = Fj—p .

Proof. — The implications d) =>a) = c¢) and d) = b) are clear.
It is enough to show b) = d) and ¢) = d). Put H = M“.

Assume first b). Let PGr)’ H = Ker (N'+! : GrY H — Gr%_,H)

be the primitive part of Gr}vH for j > 0. By the condition b) the primitive
decomposition

(3.7.1) Gr H = ®;_a2m=iN™PGr;' H

is compatible with F' (applying N7~™ to (3 7.1) and using b) by decreasing
induction on j). Let

sj : (PGr) H,F) — (W;H,F)

be a filtered C-linear map whose composition with the canonical projection -
W;H — Gr;-VH is the natural inclusion. (Such a map exists using a basis
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of PGr)' H compatible with F.) By assumption ImN’+1s; ¢ W_;_sH
and we can modify s; so that Im N7*!s; C W_;_,H for any a > 4 by
induction on a. In fact we use the condition b) for j + a — 1 and the
factorization N+~! = N9+IN°=2 where N°~2W;4,—1 C W;—; follows
from a > 4. Thus we get s; such that N9*1s; = 0, and these s; give a
lifting of (3.7.1) to H, which implies d).

Assume now c). Put K; = Ker N7 and I = Im N*.Then we have
isomorphisms

N : GriGrfH —— Gri"'GrX  H for j > 2,

because d) holds always if we forget F. In particular we get the
isomorphisms

(3.7.2) N7 : GriGrf,, —— GrjK H for j > 0.

By the condition c), (3.7.2) induces the isomorphisms

N7 : F,_; Gr{Gr}$,H —— F,Gr}K: H,
because (N?)"(K1H) = Kj41H and I°H = H. Then we have the
isomorphisms
NI . N )
(3.7.3) F,;G1)Grf, H — F,_;Gr}*Gt& ,H —= F,Gr{ K\ H
for 0 < i < j, because these maps are injective (forgetting F'). Let
s; : (GTJEK.H,F) = (K1 H, F[j])
be a filtered C-linear map whose composition with the natural projection

KjhH— Gr‘}GrﬁlH is the inverse of (3.7.2). Then these s; induce the
filtered isomorphisms for i >0 : '

ZNj_iSj : ®;2i(GrjK H, F[—i]) ——(Gr}, H, F)

j2i
by (3.7.3). Therefore we get

Z Nj_isj : @Jzzzo(Gr}KlH)F[—t]) — (H’F)
§2i20

which implies d).



BRIESKORN LATTICE : 59

3.8 Remark. — In the case of Brieskorn lattice (cf. 2.6), the
conditions b) and c) are satisfied by (2.6.3). By the proof of 3.6,
GryvAg = ®Ay41,¢ is identified with —N by the isomorphisms 7, if we
take a good section corresponding to an opposite (B)-filtration, cf. the
remark after the proof of 3.6.

The differential equation (3.6.1) is uniquely determined by the
eigenspace decomposition by A;, because A, represents the action of f
on Qg := Q}‘&}/df AQ% o(= My /07 My).

Problem. — Find the characterization of the direct sum decomposi-
tion of Qy corresponding to an opposite (A)-or (B)-filtration.

3.9. Remark. — If M is not quasi-unipotent, we have to choose a
total order > of C satisfyinga+1>a,a>biffa+1 > b+ 1, and there
exists an integer m such that a + m > b, for any a,b € C. It is equivalent
to a choice of A C C and a total order of A such that A - C — C/Z is

<
bijective, A 3 1 and supA = 1. (Put A = {a € C|0 # a < 1}.) Then
the same argument as in 3.4-6 applies. Here the restriction of the order

to R may be different from the usual one. This will be used in 4.4 for the
construction of a pathological example.

3.10. Let G be the splitting of the Hodge filtration F on the Milnor
cohomology constructed in 2.8. Then it gives an opposite (B)-filtration U
by the isomorphism (1.6.1). Let G* C M*,cg, and M, be as in 3.4-6 (i.e.

v(M,) = Im Z Cga). Then by the identification of the polarization §

8
in 2.7, we have

(3.10.1) $(G*,GP)=0 fora+B#n+1,
o S : G*®G"!~* - C®a; ™! is a perfect pairing .
Since M = @K ®c G* as K-modules and Im ¢cgo C ZC[&{ alowreal
~ 2
for 8 > a, we have

(3.10.2) S (E c.,a(u),Zc.sg(v)> = S(u,v) foru € G*,v eGP,
5

v

because S(My, My) C F_1_nK = C{{0;*}}6; ™" by (2.7.10). (This gives
some relation between cgass, cf. 4.1 for a special case.) In particular
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the direct sum decomposition Im v = @v(Mj) is orthogonal for S, and
S(Im v, Im v) € Co; ™ L.

Remark. — Assume n is even (i.e.the duality S on H"(X,,Q); is
anti-symmetric), and H"(Xo,Q); contains H' @ H” as a direct factor
of mixed Hodge structure compatible with § and N, where H' =
®ocicsH's, H' = ®1<icoH"3,H'; = H"; = Q(—i — (n — 2)/2),NH'; =
H'; (¢ > 0),NH", = H'|,NH'y = NH", = 0, and S(H',H") = 0.
Then S(H';, H';) # 0iff i+ j = 3 (same for H"), because H'; = FPW,,H'
forp=i+(n—2)/2.

In this case we have an (A)-(but not (B)-) opposite filtration U of
F on H @ H” (hence on H"(Xo,,Q)) compatible with S. For example
the splitting FPU P for p = i + (n — 2)/2 is generated by e3(i = 3), ez
and f2 + e3(t = 2),e; and fi(i = 1) and ey — fi(: = 0), where e;
and f; are a generator of H'; and H"; such that S(ep,e3) = S(fi, f2)-
By the same argument as above, the corresponding section v satisfies
S(Im v, Im v) C Co; ™1,

It is very probable that this case actually occurs (e.g. f = z'%+¢'%+
21% 4 w0 4 (zyzw)? + v?).

4. Applications.

4.1. b-function. Let M,M, = F_,M,M, and b(s) be as in the
introduction. We have tMy = 8;* My, because My C V>°M by [K1][M1]
and O;t is bijective on M,. Let U be an opposite (B)-filtration to the
Hodge filtration F (cf. 3.1 and 3.8) and v the corresponding good section
in 3.4 (or 3.6). Let G* and cg, : G* — MP” be as in the proof of 3.6, i.e.
@Bolm ana = Im v. Here G* = 0 except for 0 < a < n +1 by (2.6.3).

B
Put H{," = Mo N M®. Then
(4.1.1) M, = éﬁé", i.e. Mo C M is compatible with the decomposition
(151),and M = > Im N9 7cs_ja,

1,j20,a<B~j

because M is stable by d;t and generated by Im Z cga over C{{0;'}}

B8
(use the theory of Jordan decomposition). Let fi,...,B3, be the
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eigenvalues of 8;¢ on M /0F 1Mo. Then (4.1.1) implies

(4.1.2) #{il6; = B} = dim Mg /07" My,
(4.1.3) min ¢; = min §; > 0,max 3; <max a; <n+1,
where 04,...,a, are the exponents of f, i.e. #{ilo; = a} = dim G* =

dim Qf. Let F be the filtration on M* asin 3.1, i.e. F,M* = @;<,0;G*™".
We define F' on M by
FiM® = 8P ME+P.

Then F, C F, by (4.1.1) and dim Grf; Grf "M® is the number of i such
that a; = o+ p and B; = a + g, if we index {a;} and {8;} properly. We
have also dimCHO/MO = Z Bi — Zai.

From now on (in 4.1) we assume n = 1. (A similar argument holds
if min @; > (n —1)/2.) Then we have by (4.1.3) :

Im cgo C 8;GP! for B> a.
In particular cgo = 0 for § > 1 and 8 > c. This implies
—_~ B B
(4.1.3) Mg = {G +NG” + Za<g Imegy, for0<pB<1
M# forl1<fpg<2.

Therefore Moﬁ is compatible with the decomposition M? = G® @ 9,GP+*
for 0 < 8 < 1. Now we assume that the splitting of Hodge filtration is
orthogonal with respect to the duality (cf. 2.8). Then by (3.10.2) we have

(4.14) 97'cs_16 : G* =GP and 8, ¢;_ga-p : G* P = G*° are
dual of each other by the duality S for 8 > a + 1.

We have the same for 8;'N : G* —» G**! and §;!N : G'7* -
G?~“, and we conclude that

(4.1.5) dim(MP™' N 8;,GP) = dim Im((N, cs-1,0) : Dagp-1G* — 8;G)
= dim Im((N, ¢1—a2-8) : G?# = ®a<p-10,G*"%).
On the other hand we have
(4.1.6) Ker fN Q% =Ker (N,cq) : G = ©p>,0;GPH!.

In fact the multiplication of f on €y is identified with Ay, i.e. the action
of t on My (cf. 3.6), and

(4.1.7) (Ot — a)v(u) = Gyv(Aou) for u € OF (= m)
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by (8.6.1). Since Im cha = v(Q%), we have
B

Ker fNQ} =Ker (0t —a : Im (ZCﬁa) — M).
B
Then (4.1.6) follows from 9t — 8 = 0 on Im cg, for B > a (in fact,
Im Neg, C 32GP*2 = 0), and it implies
(4.1.8)
Ker fN Q% =Qf forl1<a<?2,

dim (Mj ' N8,GP) = dim Q5 ?/Ker fN Q37 for1<p<2

Here the first assertion: follows also from (3.6.2). Therefore we get the
assertion in the introduction, because b(s)(s + 1) Ilca (s + a)™! is the
product of (s + a) such that Hg/a; IM(?"I # 0, where A is as in the
introduction. (If » > 1 and min a; > (n — 1)/2, we replace the condition
0<a<lby(n—-1)/2<a< (n+1)/2in the definition of A.)

Remark. — Assume n = 1, the monodromy is semisimple, and
a; # aj(modZ) for i # j,i.e. dim M® =1 or 0. The last condition implies
that v is unique, because G* = M*“ or 0. Let u; be a generator of G** for
1 < i < p, where we assume a; < a; for ¢ < j and S(u;,upt1-i) = o2
Put
Vi = u; + anj—l,a.'ui =u; + chiatuj = v(uy),
where ¢;; =0 if a; < ci,- +1, and v; = u; if é,- > 1. Therefore we get

(4.1.9) pr (tv;) = Z(aj — a; — 1)¢jipr (vj).
J
On the other hand, 8; = a; —1iff ¢;; := (aj — a; — 1)c;; # 0 for

some i, where ﬁ;-s are uniquely indexed by the condition 3; = a;j(mod Z).
Since ujs are orthogonal with respect to the duality, i.e. S(ui,u;) # 0 iff
i+ j = p+ 1, we have the same for vs, and we get by (4.1.4) :
(4.1.10)

Bj =a; —1iff €,41-iu41-; # 0 for some i, i.e. pr(v,41—;) ¢ Ker f.

This is equivalent to the assertion in the introduction in this case. In
general, Ao(= (Cji) in this case) is symmetric with respect to the duality
S (i-e. €ji = Cut1—i,u+1—; in this case), because S induces Grothendieck’s
residue pairing on Q = Grf, M by (2.7.10), cf. [O][SK].
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4.2. b-function and p-constant deformation . — Let {fy }veT be a p-
constant deformation of a holomorphic function with isolated singularity,
and (M, F) the associated Gauss-Manin system on S x T, where S and
T are as in 2.9. Then the condition in 2.9 : M is trivial along T, is
satisfied, i.e. the Gauss-Manin systems for fy are canonically identified
by the parallel translation in 2.9 and the Brieskorn lattices My(¢') vary
holomorphically. Let U be an opposite filtration for fo. Then it remains to
be an opposite filtration for ' € T sufficiently near 0 by the above triviality,
because (2.9.1) is satisfied (cf. 2.10). We can also check that G* and cg,
vary holomorphically with respect to ¢’. In particular we get a holomorphic
stratification of T' (by restricting T if necessary) such that the b-function
and Bjs are constant on each stratum, because these invariants are
determined by the rank of the morphisms of vector spaces Z N3 cs_ja
in (4.1.1) which depend on the parameter holomorphically. Using a
desingularization we get a similar statification of the u-constant stratum of
the versal deformation by decreasing induction on the dimension of strata,
because these invariants are constant on a Zariski open subset. If the
p-constant stratum is irreductible, the b-function on its open stratum is
called the b-function of the generic y-constant deformation of f : = fjo.
Note that on the open stratum dim 17{,’ and dim .ﬁo /Mo become maximal.
We shall determine later the b-function of generic y-constant deformation
of a quasi-homogeneous polynomial of two variables. First we shall review
the case of quasi-homogeneous polynomial, and show how to calculate b-
function, etc. of its y-constant deformation.

Let f be a quasi-homogeneous polynomial of n + 1 variables with
weight (wo,...,wy), i.e. f is a linear combination of monomials z” for
v € N**! such that Zwiw = 1, where w]s are rational numbers. We

i
assume f has an isolate singularity at 0. For g(z)dz € M, such that g(z)
is a monomial z*~* = [ z}*~" we have by Brieskorn (cf. also (4.2.4)) :

i

(4.2.1) (a,t - Z w,-u,-) g(x)dr=0 in M,

ie. g(x)dz € M*®) with a(v) = Zwiw. Let gi(z)(1 < i < p) be

1
monomials such that {g;(z)dz} is a C-basis of 5. Then {gi(z)dz} is a
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basis of My over C{{8;'}} and over C{t}. In particular we get

(42.2) dor =[[@ -1 - 1)

using the morphism 8f : C"*! — C™!) as is well-known. By [V4]
the p-constant stratum is smooth, and any (sufficiently small) u-constant
deformation is given by

(4.2.3) fl=Ff+ ) tig),

a;i o1+l

where a; = a(y;) for gi(x) = z¥7! and oy = Zwi, ie. gi(z) = L
From now on we assume t'; = 0 for a; = a; + 1 by replacing f by
f+ Z t'i9i(x). For v € N™1, put u”(resp.v”) = z”"'dz in M the
a;=a1+1

Gauss-Manin system for f(resp.f') for v € Z’j_‘”, where 1 = (1,...,1) €
N"+1. Here we identify the two Gauss-Manin systems for f and f’ by the
parallel translation in 2.9, and u” also denotes its parallel translate. Then
we have v”,v” € V") M and Gr?,(")v" = u” in M*") because f = f'
modulo V>1Ox, cf. [S7]. To calculate cs, (hence Bis and b(s)) for f,
it is enough to express v”’'s by a linear combination of 8 7u*’s modulo
V™M. Here the monodromy is semi-simple (i.e. N = 0) and the choice of
gi's gives the section v such that G* in 3.4-6 is generated by Gr{;(g;(z)dz)
with a; = a. We first check

(4.2.4) a)d; ' v'=Y_ wizi(0f /0z:)z* " dx
=(f+ Z(ai — a1)tigi(2))x* " dz,
ie. (Ot — a(v) V"= Z 0;(1 + a1 — a;)tigi(x)z” " dx)

in M. Therefore v” —u" is determined by 8;v” such that o(¥') > a(v)+1,
and we can calculate 8]v” modulo V*M by induction on a(v) — j. (For

the determination of cg,, we have to repeat the argument in the proof of
34.)

From now on (in 4.2) we assume n = 1. Then we have JE‘," D G*
and M = G*® M N8:G*"(0 < a < 1) and M* (otherwise), cf. 4.1 for
the notation. The claim is that for f' a generic u-constant deformation of
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a quasi-homogeneous polynomial f and for o < 1, we have

(4.2.5) dim Mg N 8,G**! = min (dim 031, Y dim 0F),
B<a

where G* = Qf (= M) by 3.4-6. As a corollary we get

(4.2.6) (s+1)"'b(s) is the product of (s + a) such that a = a; — 1 with
a;>ap+lora=a; with#{j : oj < -1} <#{j : o = a},
where b(s) is the b-function of generic deformation of f, and a,...,a, are

the exponents of f such that a; is the minimal one. (Here (s + 1)7b(s)
is reduced, because N = 0.)

For the proof of (4.2.5) we need some construction. By the condition
of isolated singularity, f must contain a monomial z™ or z™y, and y™ or
zy". Therefore the weight of f is either (m=!,n7!),(m™!,(m—1)m~1n"1)
or (n—1)(mn-1)"1,(m—1)(mn—1)"1),ie. fcontains z™+y",z™+zy"
and ™y + zy" respectively. In these three cases, we define I' C C[z,y] to
be the subspace generated by z‘y’ such that 0 <i <m—-2,0<j<n-2;
0<i<m-1,0<j<n-2o0r(45)=(0,n-1);0<i<m-1,0<j5<
n — 1 respectively. We denote by I'® the subspace of I' generated by zy’
such that(i + 1)wg + (5 + 1)z; = a. Then for f generic the natural map
I' — Qy defined by g — gdz A dy is an isomorphism, and hence induces
r«—, Q% (i.e. we have chosen g;'s).

We prove the assertion (4.2.5) in the case Z dim I'® < dim T**!,

B<a
The argument is same in the other case if we restrict to a good subspace

of ®g<aI® whose dimension is same as I'**!. We take monomials h. for
0 < v £ a— o such that h,'*77 C rot+l (in particular a(hy) —a; =
a+l—a+vy=v+1>1)and ®h,I*" = I'**! is injective. Put
flf=F+ Z tyh, for t, € C generic. '
0<y<a—ai
Then it is enough to show the equality (4.2.5) for this f’, because the
inequality < is clear and dim M{Nd;G**! is maximal on the open stratum.

Here we may assume that f is generic and the morphism I' — Qy is
bijective. For g € T?(8 < @), we have

(Gt~ B)(gdz Ady) = Y —Bryty(hygds Ady)

0<v<a—a;
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in M by (4.2.4), where the right hand side modulo V>*M is independent
of t, for ¥ > a— f and 8;(h,gdz Ady) modulo V>*M for 0 < v < a—f is
independent of ¢, . In fact with the notation of (4.2.4) we can check that
v” modulo V>®M is independent of t., for any a,, v such that a(v)+v >
a by induction on a — a(v), where the case a = a(v), i.e. Griv” =¥
is independent of any t¢,, was shown before (4.2.4). Therefore by the
proof of 3.4, we get a decomposition cq,q—y = €'a,a—y +¢"a,a—~ such that
¢'a,a—~ depends at most on ¢; for 0 < § < y and ¢” 4,4 is identified with
tyh, : T*~7 — I'**! by the isomorphism I'* = Q% = G* up to a non-zero
constant multiple. We choose ¢, inductively so that the composition

@Ca,a—'y . @—7_<_—71Ga_7 —_ 6tGo:+1 = Fa+1 —_— Fa+1/ @6>7’ th“"“‘
is injective. Then this completes the proof of (4.2.5).

Remark. — In the case a; # a;(i # j), eg. f = z® +y® with
(a,b) = 1, the assertions (and the proof of) (4.2.5) and (4.2.6) become
very simple (because dim 2F = 1 or 0), and they are proved by Cassou-
Nogués in the case f = z°® + y® with (a,b) = 1 using another method cf.
[CN1].

4.3. Primitive forms. With the notations and the assumptions of 2.5,
put (M,F) = (/Cx|z, F) ,i.e. (M, F)isthe germ of the filtered micro-

p n

local Gauss-Manin system associated to a deformation of a holomorphic
function with an isolated singularity. First we assume ¥ = S, i.e. the
base space is one dimensional. By 3.6 and 3.8, we have a basis {v;} of the
Brieskorn lattice F_, M over C{{0;'}} satisfying

(4.3.1) tv = Agv + A0, v,

where v = Y(v1,...,v,) and Ao, A; are p x p matrices. Here we may
assume furthermore that A, is semi-simple, i.e.

(4.3.2) A, is a diagonal matrix (o),

by changing v;'s. We can also show that {v;} is a basis over C{t}, because
Grg My = VOGrg M, cf. (3.4.3). By 3.10 we may assume furthermore :

(4.3.3) S(v,—,vj) € CB{"“.

Here note that the eigenvalues oy,...,a, of A; coincide with the usual
exponents, i.e. #{i : a; =a} = dim Gr{;Qy.
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But in some cases, there exists a basis {v;} of M, over C{{8;'}} and
over C{t}, which satisfies (4.3.1-3), but whose eigenvalues o;'s are different
from the usual exponents, cf. the example below.

Corresponding to a basis satisfying (4.3.1-3), we can show the

existence of a primitive form in the sense of K. Saito [Sk][O] using a result
of Malgrange.

We now assume that (M, F) is associated to a versal deformation, i.e.
dim Y = u. Let (M(0), F) be its restriction to S x {0} CY =85 x T, i.e.
F,M(0) = Os ®0, F,M. Let {v;} be a basis of F_, M(0) over C{{3;'}}
satisfying (4.3.1-3). According to Malgrange, the theorem (5.9) in [M3] is
true without the hypothesis on the monodromy (Z*), cf. [M4]. Therefore
a basis satisfying (4.3.1) is uniquely extended to a basis of F_,M over
R =O7{{6;'}} (cf. (2.7.1)), denoted also by {v;}, such that

t1v = Ao(t)v + 4,07 v,
(4.3.4)
07 10,v = By(t')v

where Ao(t'), B;(t') are u x p matrices whose coefficients are holomorphic
functions of ¢ such that A¢(0) = Ao (and A, is same as in (4.3.1)). Here
t = t; is the coordinate of S, t' = (2,...,t,) is the coordinate system of
T, and §; = 8/dt;. Then we can easily check (4.3.3) for the extended v;'s
using (4.3.3) for the restricted v;'s and (4.3.4), (2.7.8-10). In fact we have

OkS(vi,v;) = "615(2 b5ve, v;) + 01S(vi, Z b5 Um)
(0g? ... 0, S(v;,v5))ler=0 € C[01]07 ™ for v # 0,
where B (t') = (bfj), and the assertion follows from

S(F_nM,F_,M) C F_,_1K = RO;™?, cf. (2.7.10).

By (4.3.2) there exists some j such that pr (v;) generates Grf M=
(Q}"};/df’ A Q% 7)o over Ox 0. (By Nakayama’s lemma it is enough to
check this condition for the restriction to ¢’ = 0.) Then ¢ = 8] 'v; satisfies
the conditions of primitive form. In fact it remains to check the condition
on the Euler operator E, but this follows immediately from A;v; = a;v;,
i.e. v; is an eigenvector of A;. We get E¢ = a;(, i.e. Ev; = (aj — 1)v;,
because E is uniquely characterized by the conditions t;0,—FE € Z Or,00;

i>1
and E(F_,M) C F_,M (cf. [loc. cit]), and we use (4.3.4).



68 Morihiko SAITO

4.4. Example. — f = 2% + ¢, f' = 2% + 45 + 2%y,
Let M be the Gauss-Manin system of f and f’, and ©”,v” as in

4.2. Then {u” : 0 < yy,11 < 6} is a basis of M, for f, and a basis
{w'"¥ : 0<wp, 11 <6} of My for f' is given by

u'? for v # (1,1)
'Y = 4D 4 48,465 for ¢ € C*.
But it is also possible that

uw'Y =¥ for v # (1,1),(5,5)
W) = gy (1)

u’(5,5) — u(lrl) + aatu(515),

where we can also check S(u'”,u'*) € C8;?, i.e. the corresponding section
v satisfies (4.3.1-3). For the second basis the eigenvalues of A; associated
to the corresponding section are

8/6,4/6, and (i +j)/6 for 0 <i,j < 6,3 <i+j <9,

where the minimal is 3/6 and its multiplicity is 2. In fact this is the case
where we choose an order > of C in 3.9 such that 1/3 > 2/3, and apply
the same argument.

4.5. Remark. — In 4.3 we used the condition (4.3.2) essentially for
the existence of an eigenvector generating Gr” M. If A, is not semi-
simple, we have to prove something non-trivial :

(4.5.1)
the natural morphism Ker ((41), —id) — Q¢ ® Ox 0/mx o is nonzero,

where mx o is the maximal ideal of Ox o and we restrict to t' = 0, i.e.
Grf 2M = Qs. This point is completely missing in the proof of (4.2) in
[Sk] (where the definition of good section is different from that in this
paper, i.e. K. Saito calls a section good, if its image is generated over
Or by a basis satisfying (4.3.3-4)). Probably there is a basis satisfying
(4.3.3-4) but A, is not semi-simple, cf. the remark in 3.10 (and 3.6). I
don’t know whether (4.5.1) is true in general. Here note also that in (4.4)
of [Sk], the matrix S(¢',6;!) is not uniquely determined by the condition
(4.4.3) in [loc. cit], because there still remains the ambiguity of M, (Or).
In (4.3.4) (in this paper) the expansion of the action of J; is given by only
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one term; a coordinate system satisfying z Co;¢ = Z Cuv; should be
the flat coordinate in the sense of K. Saito [loc. cit].

As is shown by the above example 4.4, there is a primitive form in the
sense of [loc. cit] whose exponents (i.e. the eigenvalues of A;) are different
from the usual exponents, and such that the eigenvalue a; of the generating
vector in 4.2 cannot be the minimal eigenvalue and the multiplicity of the
minimal is not one. For the primitive form corresponding to good sections
in 3.6 and 3.10, its exponents are the usual ones and «; in 4.2 is the minimal
with multiplicity one. This shows that we cannot control everything by
using only the higher residue pairing, and we have to add some axiom to
the condition for primitive form, but it is rather difficult to find a good
one which can be effectively combined with the other conditions. In fact
the condition on the filtration V is restricted only to ¢’ = 0, and it is not '
easy to use this condition on the base space of the versal deformation.

Originally the definition of primitive form was obtained to axiomize
the arguments used in the case of rational double and simple elliptic
singularity. But in those cases there was another important ingredient : the
existence of weight or degree on the variables (i.e. the C*-action on the base
space), and the non-negativity of the degree (with the stability of quasi-
homogeneity by p-constant deformation) was crucial in the argument (for
example, the natural simultaneous compactification of fibers was used).
I don’t know whether the second ingredient can be generalized or well
replaced. It might be clever to restrict to the case of quasi-homogeneous
polynomial to avoid the above pathology. But the problem is still difficult
even in the case of 14 exceptional singularity (e.g. f = z” +y® +2%) where
we cannot compactify all the fibers simultaneously in the natural way (i.e.
have to restrict to the non-negative degree part of the base space.)

Note also that the definition of primitive form was local(i.e. as a
germ), because the base space of the versal deformation is defined only
as a germ. But I don’t know whether we can expect a good theory of
period mapping of (a partial compactification of) the complement of the
discriminant of the base space (as a germ). It is rather interesting whether
the primitive form can be extended globally on the base space in the case
of quasi-homogeneous polynomial (especially, the 14 exceptional singu-
larities). As to the naturality of the period mapping associated to the
primitive form, we’ll have to find a more intrinsic definition of M("/?)
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(e.g. for which primitive form (the monodromy group of) Sol(M™/?)) is
naturally defined over Q or R).
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